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Bayesian learning
Maximum a posteriori and maximum likelihood learning
Bayes net learning

I ML parameter learning with complete data
I linear regression
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Outline

We have already seen at probabilistic inference that knowledge is uncertain.

We can deal with uncertainty, but to do so we need to set up a probabilistic

model of the world. We will show that the Bayesian approach is also a

very effective and general solution to the problem of noise and overfitting.

Since the Bayesian approach is very calculation-intensive, we present two

other approaches that give almost as accurate results but are easier to

compute. We also look at how the parameters of the Bayesian network

can be determined in a discrete or continuous case.



Full Bayesian learning

View learning as Bayesian updating of a probability distribution over
the hypothesis space
H is the hypothesis variable, values h1, h2, . . ., prior P(H)
jth observation dj gives the outcome of random variable Dj

I training data d = d1, . . . , dN

Given the data so far, each hypothesis has a posterior probability:
P(hi |d) = αP(d|hi )P(hi )

I where P(d|hi ) is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:
P(X |d) = Σi P(X |d, hi )P(hi |d) = Σi P(X |hi )P(hi |d)
No need to pick one best-guess hypothesis!2
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Full Bayesian learning

Think of Bayesian learning as a change in the probability distribution over

the hypothesis space. For this we have a hypothesis variable H, which

has values – the hypotheses – and these values have prior probabilities

even before the learning process, i.e. H has a probability distribution. The

results of experiments – the observations – are related to random variables.

All the observations will be denoted by d . By applying the Bayes-rule, the

conditional probability of each hypothesis in case of the observation can

be calculated, where the conditional probability of the sample in case of

hypothesis – called likelihood – plays an important role. If we want to

predict something according to the sample, we need a weighted sum of

probability distribution of this certain something in case of hypothesis. It

is important: there is no need to select the most probable hypothesis, we

use all of them.



Example

Suppose there are five kinds of bags of candies:

I 10% are h1: 100% cherry candies
I 20% are h2: 75% cherry candies + 25% lime candies
I 40% are h3: 50% cherry candies + 50% lime candies
I 20% are h4: 25% cherry candies + 75% lime candies
I 10% are h5: 100% lime candies

Then we observe candies drawn from some bag:

What kind of bag is it? What flavour will the next candy be?
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Example

A candy factory sells its candies in different configurations, there are dif-

ferent proportions of cherry and lemon candies in the bags. (Lets think of

sack-sized bags – we have thousands of candies in a bag, not only 8, as you

see in the picture – to take away the difference between sampling with and

without replacement.) We have priori probabilities about compositions.

We are taking the candies out of the bag one by one and each one will be

lemon. What kind of bag it is, and what will be the next candy?



Posterior probability of hypotheses
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Posterior probability of hypotheses

Before we take the first candy out of the bag, we can only use the prior

probabilities, and according to them h3 is the most probable hypothesis.

But even h1 has a 10% chance. However, by pulling out the first candy,

the probability of h1 falls to 0%. As more and more lemon candies come

out, h5 becomes the most likely hypothesis. If we are curious about the

probability of hypothesis h3 – where there is the same amount of cherry and

lemon candies – then the chance of continuously pulling a lemon candies

is 0.5n, which approximates to zero.



Prediction probability
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Prediction probability

By using the formula at the bottom of page 3 the likelihood that subsequent

candies will also be lemon is increasing from candy to candy.



MAP approximation

Summing over the hypothesis space is often intractable

I (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose hMAP maximizing
P(hi |d)
I.e., maximize P(d|hi )P(hi ) or logP(d|hi ) + logP(hi )
Log terms can be viewed as (negative of)

I bits to encode data given hypothesis + bits to encode hypothesis

This is the basic idea of minimum description length (MDL) learning
For deterministic hypotheses, P(d|hi ) is 1 if consistent, 0 otherwise

I =⇒ MAP = simplest consistent hypothesis (cf. science)2
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MAP approximation

The problem with the Bayesian method is that it would take a huge amount
of computation to determine accurate forecasts. For simplicity, we only use
one term, the one that is most probable, that is the one for which P(hi |d)
is maximal. This could be dangerous as the Bayesian method gives an
80% chance for the fourth candy, whereas with this method it is 100%,
however for large datasets the difference will be negligible.

We know from earlier that P(hi |d) is proportional to P(d |hi )P(hi ), and

we need to take its maximum. The logarithm of the maximal value is

also maximal, and this leads us to the concept of information, because

logP(d |hi ) + logP(hi ) is maximal iff − logP(d |hi )− logP(hi ) is minimal,

which is the entropy of the data in case of the hypothesis plus the entropy

of the hypothesis hi . This sum should be minimized, i.e. described in the

shortest form.



MAP approximation

Summing over the hypothesis space is often intractable

I (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose hMAP maximizing
P(hi |d)
I.e., maximize P(d|hi )P(hi ) or logP(d|hi ) + logP(hi )
Log terms can be viewed as (negative of)

I bits to encode data given hypothesis + bits to encode hypothesis

This is the basic idea of minimum description length (MDL) learning
For deterministic hypotheses, P(d|hi ) is 1 if consistent, 0 otherwise

I =⇒ MAP = simplest consistent hypothesis (cf. science)2
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MAP approximation

If our hypotheses does not contain uncertainty (there are only cherry can-

dies or only lemon candies in the bag), then the conditional probability can

only be 1 or 0. The former means that the hypothesis is consistent with

the data, so Occams razor is a good method for prediction.



ML approximation

For large data sets, prior becomes irrelevant
Maximum likelihood (ML) learning: choose hML maximizing P(d|hi )
I.e., simply get the best fit to the data; identical to MAP for uniform
prior

I which is reasonable if all hypotheses are of the same complexity

ML is the “standard” (non-Bayesian) statistical learning method
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ML approximation

If the prior probabilities of our hypotheses are the same, then we only need

to select the hi for which P(d |hi ) will be maximal. It the sample is big

enough, it is worth using this simplification. This is the reason why this

method is very often used in statistics.



ML parameter learning in Bayes nets

Bag from a new manufacturer; fraction θ of cherry candies?

Any θ is possible: continuum of hypotheses hθ
I θ is a parameter for this simple binomial family of models

Suppose we unwrap N candies, c cherries and ` = N − c limes

These are i.i.d. (independent, identically distributed) observations, so
P(d|hθ) =

∏N
j=1 P(dj |hθ) = θc · (1− θ)`

Maximize this w.r.t. θ – which is easier for the log-likelihood:

L(d|hθ) = logP(d|hθ) =
N∑
j=1

logP(dj |hθ) = c log θ + ` log(1− θ)

dL(d|hθ)

dθ
=

c

θ
− `

1− θ
= 0 =⇒ θ =

c

c + `
=

c

N

}%
Seems sensible, but causes problems with 0 counts!

2
0
2
0
-0
5
-0
1

AI #2

ML parameter learning in Bayes nets

Suppose that a bag of candy comes from a completely different manu-

facturer. We dont know what the cherry-lemon ratio will be here. The

proportion of cherry candies among all candies is denoted by theta. Thus

we will have an infinite number of hθ hypotheses. Assuming that all θ

values can occur with the same probability, it is worthwhile using an ML

approach. The associated Bayes network contains only one vertex for which

the prior probability is θ. Consider a sample of size N containing c cherries

and l lemon candies (c + l = N). The probability of this sample in case

of hθ can be calculated by the binomial theorem, assuming that candies

have the same taste with the same probability and members of the sample

are independent of each other. The question is when does this value have

a maximum. To do this, we consider its logarithm – so the product is

converted into a sum. The derivative at the maximum is 0, so we get that

the best approximation is the ratio in the sample.



ML parameter learning in Bayes nets

Bag from a new manufacturer; fraction θ of cherry candies?

Any θ is possible: continuum of hypotheses hθ
I θ is a parameter for this simple binomial family of models

Suppose we unwrap N candies, c cherries and ` = N − c limes

These are i.i.d. (independent, identically distributed) observations, so
P(d|hθ) =

∏N
j=1 P(dj |hθ) = θc · (1− θ)`

Maximize this w.r.t. θ – which is easier for the log-likelihood:

L(d|hθ) = logP(d|hθ) =
N∑
j=1

logP(dj |hθ) = c log θ + ` log(1− θ)

dL(d|hθ)

dθ
=

c

θ
− `

1− θ
= 0 =⇒ θ =

c

c + `
=

c

N

}%
Seems sensible, but causes problems with 0 counts!
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ML parameter learning in Bayes nets

If the sample is small, there may be cases that have not yet occurred, so

we would assign zero probability to this. In this case, it is worth using all

sorts of tricks to complete the calculations.



Multiple parameters

Red/green wrapper depends probabilistically on flavor:

Likelihood for, e.g., cherry candy in green wrapper:
P(F = cherry ,W = green|hθ,θ1,θ2) =
P(F = cherry |hθ,θ1,θ2)P(W = green|F = cherry , hθθ1,θ2) = θ · (1− θ1)

N candies, rc red-wrapped cherry candies, etc.:
P(d|hθ,θ1,θ2) = θc(1− θ)` · θrc1 (1− θ1)gc · θr`2 (1− θ2)g`

L = [c log θ + ` log(1− θ)]+ [rc log θ1 + gc log(1− θ1)]+
[r` log θ2 + g` log(1− θ2)]2
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Multiple parameters

Suppose the candy manufacturer does not wrap the candies uniformly:
the color of the wrapper indicates the taste of the candy, but does not
necessarily identify it. This means that we have three parameters here,
the previous θ is supplemented by θ1, which specifies the probability that
the cherry candy is wrapped in red paper, and we also have a θ2, which
specifies the probability that the lemon candy is wrapped in red paper.
The Bayes-network in this case consists of two vertices. The conditional
probability of an elementary event can easily be given, which can be traced
back to the parameters.

Consider a pattern in which all four elementary events can occur. The

probability of this can be written up easily, and we can similarly write up

the logarithm of this probability as well.



Multiple parameters contd.

Derivatives of L contain only the relevant parameter:

I
∂L

∂θ
=

c

θ
− `

1− θ
= 0 =⇒ θ =

c

c + `

I
∂L

∂θ1
=

rc
θ1
− gc

1− θ1
= 0 =⇒ θ1 =

rc
rc + gc

I
∂L

∂θ2
=

r`
θ2
− g`

1− θ2
= 0 =⇒ θ2 =

r`
r` + g`

With complete data, parameters can be learned separately
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Multiple parameters contd.

We have three parameters, and we looking for a maximum in accordance

with them all, so we take the derivative according to all three directions,

and taking each zero, we get the most probable parameters. This method

can be extended to any discrete Bayesian network.



Example: linear Gaussian model

Maximizing P(y |x) =
1√
2πσ

e−
(y−(θ1x+θ2))

2

2σ2 w.r.t. θ1, θ2

= minimizing E =
N∑
j=1

(yj − (θ1xj + θ2))2

That is, minimizing the sum of squared errors gives the ML solution

I for a linear fit assuming Gaussian noise of fixed variance
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Example: linear Gaussian model

In real life, we usually need to use continuous probabilistic models, and
very often our data is normally distributed. The normal distribution has a
Gaussian density function, which has two parameters, mu and sigma – the
mean and the standard deviation, respectively.

Consider a linear Gaussian model where both parent X and child Y are

continuous and Y is a linear combination of X (y = θ1x + θ2). Thus,

the mean of the variable Y depends on the value of X , while the standard

deviation remains the same. The conditional probability – or its logarithm

presented here should be maximized, i.e., the value behind the minus sign

should be minimized. As we are working with a sample, these probabilities

are multiplied, so their logarithms are added together, therefore the sum

of squares shown here must be minimized – that is the sum of the error

squares, for which linear regression can be used here.



Summary

Full Bayesian learning gives best possible predictions but is intractable
MAP learning balances complexity with accuracy on training data
Maximum likelihood assumes uniform prior, OK for large data sets

1 Choose a parameterized family of models to describe the data

I requires substantial insight and sometimes new models

2 Write down the likelihood of the data as a function of the parameters

I may require summing over hidden variables, i.e., inference

3 Write down the derivative of the log likelihood w.r.t. each parameter
4 Find the parameter values such that the derivatives are zero

I may be hard/impossible; modern optimization techniques help2
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Summary

We have seen three methods today, in the order shown here, going from

the more complex one towards the simplest, but special conditions are

needed to use the simpler ones successfully. Here is the recipe using which

the specific model can be constructed.


