
Outline

Learning agents
Inductive learning
Decision tree learning
Measuring learning performance

2
0
2
0
-0
4
-2
6

AI #2

Outline

An intelligent agent must be able to adapt to its environment. We would
not buy a robotic vacuum cleaner if it could only clean a room of a certain
size with pre-defined furniture. We expect the vacuum cleaner to be able to
start at any point in the house, discover our house and clean up accordingly.

Today, we refresh our knowledge on the structure of learning agents, we

learn about inductive learning when we learn from patterns , how can we

construct a decision tree based on accumulated experiences, and how we

can measure the performance of a learning algorithm.



Learning

Learning is essential for unknown environments,

I i.e., when designer lacks omniscience

Learning is useful as a system construction method,

I i.e., expose the agent to reality rather than trying to write it down

Learning modifies the agent’s decision mechanisms to improve
performance

2
0
2
0
-0
4
-2
6

AI #2

Learning

Machine learning has undergone tremendous development over the past

few years. A lot of problems that didnt really have any solving methods

became manageable with machine learning especially with deep-learning.

A simple task, such as escaping from a maze works if we make a map of

the maze and record where we are going, i.e. we are essentially learning the

maze. For a more complex task, the designer may not take into account

all cases, or the number of cases is so large that it is impossible to take all

of them and determine the appropriate action. In such a case, a common

solution is to let the agent operate in the environment, and if its actions are

different from what is expected, we will intervene and endow it with new

information, teach it another rule. Of course, each new rule changes the

agents decision-making mechanism somehow, but we do this to improve

its rationality.



Learning agents

2
0
2
0
-0
4
-2
6

AI #2

Learning agents

The agent senses its environment with its sensors, thus comparing its image

of the world and its actual action with a performance standard, and this

gives a feedback to the learning element about how appropriate the action

for that state is. The learning element can then instruct the problem

generator to generate such types of problems for which the agent was not

really successful. The performance element calculates the best action for

the generated problem, and the learning element based on the problem

and the corresponding action can change the settings of the performance

element, and this process repeats until the agents works well for the given

type of tasks.



Learning element
Design of learning element is dictated by

what type of performance element is used
which functional component is to be learned
how that functional component is represented
what kind of feedback is available

Example scenarios:

Supervised learning: correct answers for each instance

Reinforcement learning: occasional rewards

2
0
2
0
-0
4
-2
6

AI #2

Learning element

Of course the design of the learning element is influenced by the environ-

ment, the formation of the rest of the agent. For a chess machine (or agent

of any other board game), the performance element is the already well-

known alpha-beta search. The goodness of this element is determined by

the number of wins and loses, so these numbers, and the concrete games

are the feedback to the learning element. The core of the learning element

is a weighted linear function that assigns a value to the leaves of the game

tree. The change in this case means that these weights can be fine-tuned

to make the agent more efficient.



Learning element
Design of learning element is dictated by

what type of performance element is used
which functional component is to be learned
how that functional component is represented
what kind of feedback is available

Example scenarios:

Supervised learning: correct answers for each instance

Reinforcement learning: occasional rewards

2
0
2
0
-0
4
-2
6

AI #2

Learning element

There are basically three learning methods.

• In case of supervised learning, we have input-output patterns, and
we need to learn a function. For example, an image recognition
application (what is on the picture, a dog or a cat?) can be taught
in this way, we give them a sequence of pictures and the information
of what is on them.

• In case of unsupervised learning, we have an input sample only. The
most known method is clustering: we need to detect the clusters of
the input. We will deal with this next time.

• Reinforcement learning is perhaps the most common method, here
the reward/punishment following a series of actions can be used to
infer how the agent should have acted. This topic is what
Chapter 21 is about.



Inductive learning (a.k.a. Science)

Simplest form: learn a function from examples (tabula rasa)
f is the target function
An example is a pair x-f (x), e.g.,

O O X

X

X

, +1

Problem: find a(n) hypothesis h such that h ≈ f given a training set of
examples
This is a highly simplified model of real learning:

Ignores prior knowledge
Assumes a deterministic, observable “environment”
Assumes examples are given
Assumes that the agent wants to learn f —why?

2
0
2
0
-0
4
-2
6

AI #2

Inductive learning (a.k.a. Science)

The algorithm receives the value of an unknown function for certain input

values, and it needs to return a function which is very similar to the un-

known function. Each pattern is a pair of x − f (x), where x is the input

value and f is the unknown function. In the figure, we need to assign a

players reward to a final result of TicTacToe. Based on this, the algorithm

should realize that the three identical symbols in a line indicates the end of

the game, as well as who won the game. The function h provided by the

algorithm is referred to as a hypothesis. It is important to give a relatively

good approximation even for untested values. Here we simplify the real

world: we assume that we have no prior knowledge about the function, the

environment is deterministic, observable and the pairs are predetermined.



Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it
agrees with f on all examples)
E.g., curve fitting:

2
0
2
0
-0
4
-2
6

AI #2

Inductive learning method

Here 6 points – input-output pairs – are represented in a coordinate system.

The question is, what function would we assign to them?



Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it
agrees with f on all examples)
E.g., curve fitting:

2
0
2
0
-0
4
-2
6

AI #2

Inductive learning method

The first idea could be a linear trend-line calculated by the principle of

least squares. It goes through one point and approaches three very well,

but we cannot say that this is optimal.



Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it
agrees with f on all examples)
E.g., curve fitting:

2
0
2
0
-0
4
-2
6

AI #2

Inductive learning method

We can fit five points with a quadratic function, which is better.



Inductive learning method

Construct/adjust h to agree with f on training set (h is consistent if it
agrees with f on all examples)
E.g., curve fitting:

2
0
2
0
-0
4
-2
6

AI #2

Inductive learning method

Moreover, with a higher-order polynomial we can reach all the points, and

there are many other functions that fit all the given points.



Inductive learning method

Construct/adjust h to agree with f on training set\ (h is consistent if it
agrees with f on all examples)
E.g., curve fitting:

Ockham’s razor: maximize a combination of consistency and simplicity

2
0
2
0
-0
4
-2
6

AI #2

Inductive learning method

How can we decide from these? We try to choose the simplest and the

best, that is, choose the simplest solution that is consistent with the data!



Attribute-based representations

Examples described by attribute values

I (Boolean, discrete, continuous, etc.)

E.g., situations where I will/won’t wait for a table:

Example
Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait
X1 T F F T Some $$$ F T French 0–10 T
X2 T F F T Full $ F F Thai 30–60 F
X3 F T F F Some $ F F Burger 0–10 T
X4 T F T T Full $ F F Thai 10–30 T
X5 T F T F Full $$$ F T French >60 F
X6 F T F T Some $$ T T Italian 0–10 T
X7 F T F F None $ T F Burger 0–10 F
X8 F F F T Some $$ T T Thai 0–10 T
X9 F T T F Full $ T F Burger >60 F
X10 T T T T Full $$$ F T Italian 10–30 F
X11 F F F F None $ F F Thai 0–10 F
X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)2
0
2
0
-0
4
-2
6

AI #2

Attribute-based representations

If a discrete function is to be learned, it is a classification problem; whilst
in case of a continuous function, the learning the function is a regression
problem. Let us generalize whether we want to wait for a free table in
a restaurant. The table shows the specific cases, our sample. The input
parameters are as follows, while the decision variable is WillWait, which is
a binary variable.

Alternative whether there is a suitable alternative restaurant nearby.

Bar whether the restaurant has a comfortable bar area to wait
in.

Fri/Sat true on Fridays and Saturdays.

Hungry whether we are hungry.

Patrons how many people are in the restaurant (values are None,
Some, and Full).

Price the restaurants price range ($, $$, $$$).



Attribute-based representations

Examples described by attribute values

I (Boolean, discrete, continuous, etc.)

E.g., situations where I will/won’t wait for a table:

Example
Attributes Target

Alt Bar Fri Hun Pat Price Rain Res Type Est WillWait
X1 T F F T Some $$$ F T French 0–10 T
X2 T F F T Full $ F F Thai 30–60 F
X3 F T F F Some $ F F Burger 0–10 T
X4 T F T T Full $ F F Thai 10–30 T
X5 T F T F Full $$$ F T French >60 F
X6 F T F T Some $$ T T Italian 0–10 T
X7 F T F F None $ T F Burger 0–10 F
X8 F F F T Some $$ T T Thai 0–10 T
X9 F T T F Full $ T F Burger >60 F
X10 T T T T Full $$$ F T Italian 10–30 F
X11 F F F F None $ F F Thai 0–10 F
X12 T T T T Full $ F F Burger 30–60 T

Classification of examples is positive (T) or negative (F)2
0
2
0
-0
4
-2
6

AI #2

Attribute-based representations

Raining whether it is raining outside.

Reservation whether we made a reservation.

Type the kind of restaurant (French, Italian, Thai, or burger).

WaitEstimate the estimated waiting time by the host (0− 10 minutes,
10− 30, 30− 60, or > 60).



Decision trees
One possible representation for hypotheses
E.g., here is the “true” tree for deciding whether to wait:

2
0
2
0
-0
4
-2
6

AI #2

Decision trees

We will use a decision tree to learn the function. Here we come to a

decision after completing a series of tests. At each non-leaf node in the

tree, we get a question and move in the direction corresponding to the

answer. The appropriate action is given in the leaves of the tree. Looking

more closely at this tree, we see that it does not use all parameters to

make a decision.



Expressiveness

Decision trees can express any function of the input attributes.

I E.g., for Boolean functions, truth table row → path to leaf:

Trivially, there is a consistent decision tree for any training set

I w/ one path to leaf for each example (unless f nondeterministic in x)
I but it probably won’t generalize to new examples

Prefer to find more compact decision trees2
0
2
0
-0
4
-2
6

AI #2

Expressiveness

All functions can be expressed with a decision tree. In computer science,

BDD and ZDD are the preferred way to describe boolean formulae, because

it gives them in a very concise form. In fact, any sample can be coded into

a decision tree, but we are interested in decision trees that are minimal in

size.



Hypothesis spaces

How many distinct decision trees with n Boolean attributes?

I = number of Boolean functions
I = number of distinct truth tables with 2n rows = 22n

I E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees

How many purely conjunctive hypotheses (e.g., Hungry ∧ ¬Rain)?

I Each attribute can be in (positive), in (negative), or out =⇒ 3n

distinct conjunctive hypotheses

More expressive hypothesis space

I increases chance that target function can be expressed :-)
I increases number of hypotheses consistent w/ training set
I =⇒ may get worse predictions :-(2

0
2
0
-0
4
-2
6

AI #2

Hypothesis spaces

The complete binary decision trees are another way of giving the truth

tables, so there are as many decision trees as there are truth tables, and

their number grow more than exponentially. If the test has more outcomes,

the number of decision trees will be even greater, so we cannot choose a

minimal one from them by listing them.



Decision tree learning

Aim: find a small tree consistent with the training examples
Idea: (recursively) choose “most significant” attribute as root of (sub)tree

func DTL(examples, attributes, default) → a decision tree

if examples is empty then return default

else if all examples have the same classification then

return the classification

else if attributes is empty then return Mode(examples)

else best:= Choose-Attribute(attributes,examples)

tree:= a new decision tree with root test best

foreach value v_i of best do

examples_i:= {elements of examples with best=v_i}

subtree := DTL(examples_i,attributes,best,Mode(examples))

add a branch to tree with label v_i and subtree subtree

return tree2
0
2
0
-0
4
-2
6

AI #2

Decision tree learning

If we want a minimal size decision tree, we should ask the most important

questions as soon as possible, i.e. which question distributes the answers

the most. By answering the most important question we get a smaller

problem, and the corresponding decision trees have to be connected into

a bigger, original decision tree.



Choosing an attribute

Idea: a good attribute splits the examples into subsets that are (ideally) all
positive or all negative}

Patrons? is a better choice—gives information about the classification2
0
2
0
-0
4
-2
6

AI #2

Choosing an attribute

Which question do we ask first? It can be seen that the number of patrons

generates two subsets that give a clear outcome (just one option), so it

is worth starting with this, because in these cases no more questions are

needed. If we were to ask about the type, we wouldnt really get ahead

because each subset contains both outcomes.



Information

Information answers questions
The more clueless I am about the answer initially, the more information is
contained in the answer
Scale: 1 bit = answer to Boolean question with prior 0.5, 0.5
Information in an answer when prior is P1, . . . ,Pn is
H(P1, . . . ,Pn) =

∑n
i=1−Pi log2 Pi (also called entropy of the prior)

2
0
2
0
-0
4
-2
6

AI #2

Information

The answers to our questions are information. Its mathematical basis

originates from Shannon in 1948. The unit of information is the bit. In

case of two answers with the same probability, we can talk about 1 bit.

If the answers have different probabilities, then the amount of information

– also commonly referred to as entropy – is given by the formula shown

here.



Information contd.

Suppose we have p positive and n negative examples at the root

I =⇒ H(p/(p + n), n/(p + n)) bits needed to classify a new example

E.g., for 12 restaurant examples, p = n = 6 so we need 1 bit

An attribute splits the examples E into subsets Ei , each of which (we
hope) needs less information to complete the classification

Let Ei have pi positive and ni negative examples

I =⇒ H(pi/(pi +ni ), ni/(pi +ni )) bits needed to classify a new example
I =⇒ expected number of bits per example over all branches is
I

∑
i
pi+ni
p+n H(pi/(pi + ni ), ni/(pi + ni ))

For Patrons?, this is 0.459 bits, for Type this is (still) 1 bit

I =⇒ choose the attribute that minimizes the remaining information
needed2

0
2
0
-0
4
-2
6

AI #2

Information contd.

If the answers to the question are a set each – contains p positive and n

negative examples – gives subsets with pi positive and ni negative exam-

ples, and the information gain for each attribute can be calculated from

these values. The information gain at the beginning is maximal for the

variable patrons, so it is worth asking this question first.



Example contd.

Decision tree learned from the 12 examples:

Substantially simpler than “true” tree—a more complex hypothesis isn’t
justified by small amount of data

2
0
2
0
-0
4
-2
6

AI #2

Example contd.

The decision tree created by this method is significantly smaller than pre-

viously specified, although they contain the same information.



Performance measurement

How do we know that h ≈ f ? (Hume’s Problem of Induction)

1 Use theorems of computational/statistical learning theory

2 Try h on a new test set of examples (use same distribution over
example space as training set)

Learning curve = % correct on test set as a function of training set size

2
0
2
0
-0
4
-2
6

AI #2

Performance measurement

How can we decide whether function h approaches f ? For example, a test

set can be used to check that works properly for these new values as well.

But where will this test data come from? The most common solution

is to divide the sample into two parts, the training set and the test set.

Based on the training set, we generate the hypothesis h and measure the

goodness of this hypothesis on the test set (in what proportion did it hit

the result). By repeating this procedure on training sets of different sizes,

we get the figure here.



Performance measurement contd.
Learning curve depends on

realizable (can express target function) vs. non-realizable

I non-realizability can be due to missing attributes
I or restricted hypothesis class (e.g., thresholded linear function)

redundant expressiveness (e.g., loads of irrelevant attributes)
2
0
2
0
-0
4
-2
6

AI #2

Performance measurement contd.

The shape of the curve depends on several factors: whether h can approach
f , is any important data missing which makes is hard to make good hy-
pothesis; does redundant data slow down the approximation; so we need
a huge sample for training.

For noisy data, we cannot expect the decision tree to be consistent with

each sample. In case of a bad model, overfitting may occur, which can

be solved by cutting back the decision tree. Appropriate statistical tests

exist, and are described in the book.



Summary

Learning needed for unknown environments, lazy designers
Learning agent = performance element + learning element
Learning method depends on type of performance element, available
feedback, type of component to be improved, and its representation
For supervised learning, the aim is to find a simple hypothesis that is
approximately consistent with training examples
Decision tree learning using information gain
Learning performance = prediction accuracy measured on test set

2
0
2
0
-0
4
-2
6

AI #2

Summary

Machine learning has been the most important part of the last 2-3 decades

of artificial intelligence. People expect to be surrounded by intelligent

devices that are able to learn. Design deficiencies can be corrected by the

agents ability to learn. The collaboration of the learning and performance

element of the agent, as well as alignment with the performance standard

gives the ability to learn. In supervised learning, we can learn from input-

output pairs, for which we need to construct a simple hypothesis. In case of

a decision tree, the information gain associated with each question can be

used to construct the tree. We can evaluate the efficiency of our method

with the performance measured on the test data.


