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INTEGER NUMBERS 
1. Integer number arithmetic 

Arithmetic is understood as the study of the operations between numbers and their properties. In the 
set of integer numbers ℤ we consider two binary operations, the addition (+) and the product (·). All of 

their properties are derived from the consideration of the following axioms: 
(A.1) They are closed operations within ℤ, that is (∀𝑛𝑛,𝑚𝑚 ∈ ℤ)(𝑛𝑛 + 𝑚𝑚 ∈ ℤ ∧ 𝑛𝑛 · 𝑚𝑚 ∈ ℤ) 

+:ℤ × ℤ → ℤ|(𝑛𝑛,𝑚𝑚) → 𝑛𝑛 + 𝑚𝑚 

·:ℤ × ℤ → ℤ|(𝑛𝑛,𝑚𝑚) → 𝑛𝑛 · 𝑚𝑚 

(A.2) Commutative law: (∀𝑛𝑛,𝑚𝑚 ∈ ℤ)(𝑛𝑛 + 𝑚𝑚 = 𝑚𝑚 + 𝑛𝑛 ∧ 𝑛𝑛 · 𝑚𝑚 = 𝑚𝑚 · 𝑛𝑛) 

(A.3) Associative law: ∀𝑛𝑛,𝑚𝑚, 𝑘𝑘 ∈ ℤ�(𝑚𝑚 + 𝑛𝑛) + 𝑘𝑘 = 𝑚𝑚 + (𝑛𝑛 + 𝑘𝑘) ∧ (𝑛𝑛 · 𝑚𝑚) · 𝑘𝑘 = 𝑛𝑛 · (𝑚𝑚 · 𝑘𝑘)� 

(A.4) Existence of identity elements: (∃0,1 ∈ ℤ)(∀𝑛𝑛 ∈ ℤ)(𝑛𝑛 + 0 = 𝑛𝑛 ∧ 𝑛𝑛 · 1 = 𝑛𝑛) 

(A.5) Distributive law: (∀𝑛𝑛,𝑚𝑚, 𝑘𝑘 ∈ ℤ)(𝑛𝑛 · (𝑚𝑚 + 𝑘𝑘) = 𝑛𝑛 · 𝑚𝑚 + 𝑛𝑛 · 𝑘𝑘) 

(A.6) Existence of an inverse element: (∀𝑛𝑛 ∈ ℤ)(∃! (−𝑛𝑛) ∈ ℤ)(𝑛𝑛 + (−𝑛𝑛) = 0) 

(A.7) Cancellation law: (∀𝑛𝑛 ∈ ℤ) �𝑛𝑛 ≠ 0 → �(∀𝑚𝑚, 𝑘𝑘 ∈ ℤ)(𝑛𝑛 · 𝑚𝑚 = 𝑛𝑛 · 𝑘𝑘 → 𝑚𝑚 = 𝑘𝑘)�� 

 
Notes: 
 From the fifth axiom, we can define the subtraction operation as 𝑛𝑛 − 𝑚𝑚: = 𝑛𝑛 + (−𝑚𝑚)∀𝑛𝑛,𝑚𝑚 ∈ ℤ 

 This set of axioms enable us to prove other integer properties such as:  
(∀𝑛𝑛 ∈ ℤ)(0 · 𝑛𝑛 = 0) 

(∀𝑛𝑛,𝑚𝑚 ∈ ℤ)(𝑛𝑛 − (−𝑚𝑚) = 𝑛𝑛 + 𝑚𝑚) 
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2. Ordering of integer numbers 

We can endow integer numbers with an order relationship that has a set of properties defined by the 
following axioms: (∀𝑛𝑛,𝑚𝑚, 𝑘𝑘 ∈ ℤ) 

(A.8) (∀𝑛𝑛 ∈ ℤ)(𝑛𝑛 ≤ 𝑛𝑛) 

(A.9) (∀𝑛𝑛,𝑚𝑚 ∈ ℤ)(𝑛𝑛 ≤ 𝑚𝑚 ∧𝑚𝑚 ≤ 𝑛𝑛 → 𝑛𝑛 = 𝑚𝑚) 

(A.10) (∀𝑛𝑛,𝑚𝑚, 𝑘𝑘 ∈ ℤ)(𝑛𝑛 ≤ 𝑚𝑚 ∧ 𝑚𝑚 ≤ 𝑘𝑘 → 𝑛𝑛 ≤ 𝑘𝑘) 

(A.11) (∀𝑛𝑛,𝑚𝑚, 𝑘𝑘 ∈ ℤ)(𝑛𝑛 ≤ 𝑚𝑚 → 𝑛𝑛 + 𝑘𝑘 ≤ 𝑚𝑚 + 𝑘𝑘) 

(A.12) (∀𝑛𝑛,𝑚𝑚, 𝑘𝑘 ∈ ℤ)(𝑛𝑛 ≤ 𝑚𝑚 ∧ 0 ≤ 𝑘𝑘 → 𝑛𝑛 · 𝑘𝑘 ≤ 𝑚𝑚 · 𝑘𝑘) 

(A.13) Well-ordering principle: (∀𝐴𝐴 ⊆ ℤ+)�𝐴𝐴 ≠ ∅ → (∃𝑚𝑚 ∈ 𝐴𝐴)(∀𝑎𝑎 ∈ 𝐴𝐴)(𝑚𝑚 ≤ 𝑎𝑎)� 

 
Notes: 
 The well-ordering principle ensures that any subset of ℤ+ = {𝑛𝑛 ∈ ℤ, 0 ≤ 𝑛𝑛} = ℕ ∪ {0} =

{𝑛𝑛 ∈ ℤ, 1 ≤ 𝑛𝑛} ∪ {0} contains an infimum (minimum element).  

 We define 𝑚𝑚 s a lower bound of a set 𝐴𝐴 ⊆ ℤ if (∀𝑎𝑎 ∈ 𝐴𝐴)(𝑚𝑚 ≤ 𝑎𝑎). We define a lower bound of a set 

as an infimum when it belongs to the set. 

 Through the definition of the infimum element, we can infer that the infimum must be unique. If 
two infimums 𝑚𝑚1,𝑚𝑚2 were to exist, through the definition we would find that 𝑚𝑚1 ≤ 𝑚𝑚2 ∧ 𝑚𝑚2 ≤ 𝑚𝑚1, and by 

applying axiom 9 we can conclude that 𝑚𝑚1 = 𝑚𝑚2. 

 From the ≤ relationship it is possible to define the <,≥, > relationships: 𝑛𝑛 < 𝑚𝑚 ↔ 𝑛𝑛 ≤ 𝑚𝑚 ∧ 𝑛𝑛 ≠ 𝑚𝑚  

 This group of axioms enable us to prove other ordering properties for integer numbers such as 
𝑛𝑛 ≤ 𝑚𝑚 ↔ −𝑚𝑚 ≤ −𝑛𝑛, 𝑛𝑛 ≤ 𝑚𝑚 ∧ 𝑘𝑘 ≤ 0 → 𝑚𝑚 · 𝑘𝑘 ≤ 𝑛𝑛 · 𝑘𝑘 
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3. Induction principle 

Proposal: 
Be it 𝑆𝑆 ⊆ ℕ = {𝑛𝑛 ∈ ℤ, 1 ≤ 𝑛𝑛} so that the following conditions are met: 

1. Induction base case: 1 ∈ 𝑆𝑆  

2. Induction hypothesis: (∀𝑘𝑘 ∈ ℕ)(𝑘𝑘 ∈ 𝑆𝑆 → 𝑘𝑘 + 1 ∈ 𝑆𝑆) 

Then 𝑆𝑆 = ℕ. 

 

Proof (exercise) 
Proof is achieved through reductio ad absurdum (reduction to absurdity):  
Suppose that 𝑆𝑆 ≠ ℕ and consider 𝑆𝑆𝑐𝑐. 

Take 𝑚𝑚, the infimum for 𝑆𝑆𝑐𝑐, guaranteed to exist by the well-ordering principle.  

Condition (1.) states that: 1 ∈ 𝑆𝑆 ⇒ 𝑚𝑚 ≠ 1 and therefore: (𝑚𝑚 − 1) ∈ ℕ ∧ (𝑚𝑚 − 1) ∉ 𝑆𝑆𝑐𝑐 → (𝑚𝑚 − 1) ∈ 𝑆𝑆 

Applying the induction hypothesis, we can affirm (𝑚𝑚 − 1) + 1 = 𝑚𝑚 ∈ 𝑆𝑆, which contradicts 𝑚𝑚 ∈ 𝑆𝑆𝑐𝑐. 

Since we have achieved a contradiction by supposing 𝑆𝑆 ≠ ℕ, we can assure that 𝑆𝑆 = ℕ 

 

Example (exercise) 
From the sequence defined recursively by 𝑎𝑎1 = 2 and 𝑎𝑎𝑛𝑛 = 𝑎𝑎𝑛𝑛−1 + 2𝑛𝑛 ∀𝑛𝑛 ≥ 2 verify via induction that 

(∀𝑛𝑛 ∈ ℕ)�𝑎𝑎𝑛𝑛 = 𝑛𝑛(𝑛𝑛 + 1)�. 

Considering 𝑆𝑆 = {𝑛𝑛 ∈ ℕ, 𝑎𝑎𝑛𝑛 = 𝑛𝑛(𝑛𝑛 + 1)} it is enough to prove through induction that 𝑆𝑆 = ℕ. 
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4. Division, quotient, and remainder 

The Division Theorem  
Given two integer numbers 𝐷𝐷,𝑑𝑑 with 𝑑𝑑 ∈ ℕ, there are two other integer numbers 𝑞𝑞, 𝑟𝑟 ∈ ℤ such that: 

1. 𝐷𝐷 = 𝑑𝑑 · 𝑞𝑞 + 𝑟𝑟  

2. 0 ≤ 𝑟𝑟 < 𝑑𝑑 

In addition, 𝑞𝑞, 𝑟𝑟 ∈ ℤ are unique, and thus (∀𝐷𝐷 ∈ ℤ)(∀𝑑𝑑 ∈ ℕ)(∃!𝑞𝑞′, 𝑟𝑟′ ∈ ℤ)(𝐷𝐷 = 𝑑𝑑 · 𝑞𝑞′ + 𝑟𝑟′ ∧ 0 ≤ 𝑟𝑟′ < 𝑑𝑑) 

 

Proof (exercise) 
The proof process of this theorem has two parts. Firstly, we must prove the existence of 𝑞𝑞, 𝑟𝑟 ∈ ℤ such 

that conditions 1. and 2. are met. To that extent, we can consider the set 𝑅𝑅 = {𝑥𝑥 ∈ ℕ | 𝐷𝐷 = 𝑑𝑑 · 𝑦𝑦 + 𝑥𝑥}, 

prove that is not an empty set and apply the well-ordering principle to take its infimum, 𝑟𝑟. This will also 

ensure the existence of 𝑞𝑞 ∈ ℤ, verifying 𝐷𝐷 = 𝑑𝑑 · 𝑞𝑞 + 𝑟𝑟. To prove that 2. is verified, we use reductio ad 
absurdum. 

Secondly, we must prove that 𝑞𝑞, 𝑟𝑟 ∈ ℤ are unique for each pair of integers 𝐷𝐷,𝑑𝑑 with 𝑑𝑑 ∈ ℕ.  To that 

extent, it is enough to consider the existence of 𝑞𝑞′, 𝑟𝑟′ ∈ ℤ with the same properties and prove that they 

are equal to 𝑞𝑞, 𝑟𝑟 ∈ ℤ. 

 

Quotient and remainder 
The elements 𝑞𝑞, 𝑟𝑟 ∈ ℤ that verify the division theorem conditions are respectively defined as quotient 

and remainder. 

 

Multiples and divisors 

Definition:  
Given two integer numbers 𝐷𝐷,𝑑𝑑 ∈ ℤ, we will write 𝑑𝑑|𝐷𝐷 and say that: 

 𝑑𝑑 divides  𝐷𝐷, or 

 𝑑𝑑 is a divisor of 𝐷𝐷, or 

 𝑑𝑑 is a factor of 𝐷𝐷, or 

 𝐷𝐷 is a multiple or 𝑑𝑑  

If we can find 𝑞𝑞 ∈ ℤ such that 𝐷𝐷 = 𝑑𝑑 · 𝑞𝑞 

Or in other words: 𝑑𝑑|𝐷𝐷 ⇔ (∃𝑞𝑞 ∈ ℤ)(𝐷𝐷 = 𝑑𝑑 · 𝑞𝑞) 
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4.1. Greatest Common Divisor 

Definition:  
Given two integers 𝑛𝑛,𝑚𝑚 ∈ ℤ, we say that 𝑑𝑑 ∈ ℕ is one of the greatest common divisors of 𝑛𝑛 and 𝑚𝑚, or 

in other words, 𝑑𝑑 = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑛𝑛,𝑚𝑚), if it is possible to verify that: 

1. 𝑑𝑑|𝑛𝑛 ∧ 𝑑𝑑|𝑚𝑚 (that is, 𝑑𝑑 is a common divisor of 𝑛𝑛 and 𝑚𝑚), and 

2. (∀𝑑𝑑′ ∈ ℕ)(𝑑𝑑′|𝑛𝑛 ∧ 𝑑𝑑′|𝑚𝑚 → 𝑑𝑑′|𝑑𝑑) (that is, 𝑑𝑑 is the greatest of the common divisors) 

 

Proposal:  
Given two integers 𝑛𝑛,𝑚𝑚 ∈ ℤ, the greatest common divisor of 𝑛𝑛 and 𝑚𝑚 is unique: 

(∀𝑛𝑛,𝑚𝑚 ∈ ℤ)�∃!𝑑𝑑 = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑛𝑛,𝑚𝑚)� 

 

Proof (exercise) 
This is an easy proof. It is possible to suppose that two greatest common divisors 𝑑𝑑,𝑑𝑑′ ∈ ℕ exist, and 

then prove that they are equal through the definition. 

 
Notes 
It is possible to verify that 𝑑𝑑 = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑛𝑛,𝑚𝑚) = 𝑔𝑔𝑔𝑔𝑑𝑑(−𝑛𝑛,𝑚𝑚) = 𝑔𝑔𝑔𝑔𝑑𝑑(−𝑛𝑛,−𝑚𝑚) = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑛𝑛,−𝑚𝑚) 

For this reason, we will always calculate the greatest common divisor of positive integers. 
 

4.1.1. Euclidean algorithm 

Proposal:  
Be it two integer numbers 𝑛𝑛,𝑚𝑚 ∈ ℤ.  

If 𝑑𝑑 = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑛𝑛,𝑚𝑚), then 𝑑𝑑 divides any linear combination of 𝑛𝑛 and  𝑚𝑚.  

That is, (∀𝑎𝑎, 𝑏𝑏 ∈ ℤ)�𝑑𝑑|(𝑎𝑎𝑚𝑚 + 𝑏𝑏𝑛𝑛)� 

 
Proof 
If 𝑑𝑑 = 𝑚𝑚𝑔𝑔𝑑𝑑(𝑛𝑛,𝑚𝑚) then 𝑑𝑑|𝑛𝑛 ∧ 𝑑𝑑|𝑚𝑚. 

Through the divisor definition, we can affirm the existence of 𝑞𝑞,𝑞𝑞′ ∈ ℤ such that 𝑛𝑛 = 𝑞𝑞 · 𝑑𝑑 ∧ 𝑚𝑚 = 𝑞𝑞′ · 𝑑𝑑. 

Applying these equalities to the linear combination, we find that: 
𝑎𝑎𝑛𝑛 + 𝑏𝑏𝑛𝑛 = 𝑎𝑎 · 𝑞𝑞 · 𝑑𝑑 + 𝑏𝑏 · 𝑞𝑞′ · 𝑑𝑑 = (𝑎𝑎 · 𝑞𝑞 + 𝑏𝑏 · 𝑞𝑞′) · 𝑑𝑑 

Through the divisor definition, it is possible to conclude that 𝑑𝑑|𝑎𝑎 · 𝑛𝑛 + 𝑏𝑏 · 𝑚𝑚, as we wanted to prove. 

 

Proposal:  
Be it 𝐷𝐷,𝑑𝑑 ∈ ℕ such that 𝐷𝐷 ≥ 𝑑𝑑, and 𝑞𝑞, 𝑟𝑟 ∈ ℕ such that 𝐷𝐷 = 𝑑𝑑 · 𝑞𝑞 + 𝑟𝑟, then 𝑔𝑔𝑔𝑔𝑑𝑑(𝐷𝐷,𝑑𝑑) = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑑𝑑, 𝑟𝑟).  
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Proof 
Be it 𝑀𝑀 = 𝑔𝑔𝑔𝑔𝑑𝑑(𝐷𝐷,𝑑𝑑), to prove that 𝑀𝑀 = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑑𝑑, 𝑟𝑟) we must verify the properties of the definition. 

Since 𝑀𝑀|𝐷𝐷 ∧ 𝑀𝑀|𝑑𝑑 → 𝑀𝑀|(𝑑𝑑 · 𝑞𝑞 + 𝑟𝑟) ∧ 𝑀𝑀|𝑑𝑑, due to the prior proposal we know that 𝑀𝑀 divides any linear 

combination of 𝐷𝐷 and 𝑑𝑑, hence 𝑀𝑀|(𝐷𝐷 − 𝑞𝑞 · 𝑑𝑑), that is, 𝑀𝑀|𝑟𝑟. Therefore, 𝑀𝑀|𝑑𝑑 ∧ 𝑀𝑀|𝑟𝑟. 

In addition, if 𝑀𝑀′|𝑑𝑑 ∧ 𝑀𝑀′|𝑟𝑟, then 𝑀𝑀′|𝐷𝐷 (𝐷𝐷 being a linear combination of 𝑑𝑑 and 𝑟𝑟), and therefore 𝑀𝑀′|𝑀𝑀, 

thus proving the second property of the greatest common divisor definition. 

 

The Euclidean algorithm to calculate the greatest common divisor of two numbers consists in the 

recursive application of the prior proposal. Given 𝐷𝐷,𝑑𝑑 ∈ ℕ, we recursively define 𝑞𝑞𝑖𝑖,𝑟𝑟𝑖𝑖 ∈ ℕ as follows: 

 
𝐷𝐷 = 𝑑𝑑 · 𝑞𝑞1 + 𝑟𝑟1, 0 ≤ 𝑟𝑟1 < 𝑑𝑑 

𝑑𝑑 = 𝑟𝑟1 · 𝑞𝑞2 + 𝑟𝑟2, 0 ≤ 𝑟𝑟2 < 𝑟𝑟1 

𝑟𝑟1 = 𝑟𝑟2 · 𝑞𝑞3 + 𝑟𝑟3, 0 ≤ 𝑟𝑟3 < 𝑟𝑟2 

⋮ 

𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑖𝑖+1 · 𝑞𝑞𝑖𝑖+2 + 𝑟𝑟𝑖𝑖+2, 0 ≤ 𝑟𝑟𝑖𝑖+2 < 𝑟𝑟𝑖𝑖+1 

⋮ 

 
Since 𝑟𝑟1 > 𝑟𝑟2 > 𝑟𝑟3 > ⋯ > 𝑟𝑟𝑖𝑖 > 𝑟𝑟𝑖𝑖+1 > ⋯  and ∀𝑖𝑖, 𝑟𝑟𝑖𝑖 ∈ ℤ+ we can affirm through the well-ordering 

principle that a 𝑟𝑟𝑘𝑘 = 0 will exist. Hence, the last steps of the process will take the following form: 

 
⋮ 

𝑟𝑟𝑘𝑘−3 = 𝑟𝑟𝑘𝑘−2 · 𝑞𝑞𝑘𝑘−1 + 𝑟𝑟𝑘𝑘−1, 0 ≤ 𝑟𝑟𝑘𝑘−1 < 𝑟𝑟𝑘𝑘−2 

𝑟𝑟𝑘𝑘−2 = 𝑟𝑟𝑘𝑘−1 · 𝑞𝑞𝑘𝑘 + 𝑟𝑟𝑘𝑘 , 𝑟𝑟𝑘𝑘 = 0 

 
Observe that, in the last line, we obtained: 𝑟𝑟𝑘𝑘−2 = 𝑟𝑟𝑘𝑘−1 · 𝑞𝑞𝑘𝑘 → 𝑟𝑟𝑘𝑘−1|𝑟𝑟𝑘𝑘−2 

And therefore: 𝑔𝑔𝑔𝑔𝑑𝑑(𝑟𝑟𝑘𝑘−2, 𝑟𝑟𝑘𝑘−1) = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑟𝑟𝑘𝑘−1 · 𝑞𝑞𝑘𝑘, 𝑟𝑟𝑘𝑘−1) = 𝑟𝑟𝑘𝑘−1 

Applying the prior proposal to each of the equalities we can reach 𝑔𝑔𝑑𝑑𝑔𝑔(𝐷𝐷,𝑑𝑑) = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑟𝑟𝑘𝑘−2, 𝑟𝑟𝑘𝑘−1) = 𝑟𝑟𝑘𝑘−1. 

 
Examples 
 Calculate𝑔𝑔𝑔𝑔𝑑𝑑(105,30) 

105 = 30 · 3 + 15,0 ≤ 15 < 30                  

30 = 15 · 2 + 0 

Then 𝑔𝑔𝑔𝑔𝑑𝑑(105,30) = 15 

 Calculate 𝑔𝑔𝑔𝑔𝑑𝑑(504,396) 
504 = 396 · 1 + 108,0 ≤ 108 < 396 

396 = 108 · 3 + 72,0 ≤ 72 < 108 

108 = 72 · 1 + 36,0 ≤ 36 < 172 

72 = 36 · 2 + 0 
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Then 𝑚𝑚𝑔𝑔𝑑𝑑(504,396) = 36 

 
4.1.2. Coprime numbers and the Euler’s phi function 

Definition 
We define two integers 𝑛𝑛,𝑚𝑚 ∈ ℤ as coprime or mutually prime when 𝑚𝑚𝑔𝑔𝑑𝑑(𝑛𝑛,𝑚𝑚) = 1  

Example 
Calculate 𝑔𝑔𝑔𝑔𝑑𝑑(17,30) 

30 = 17 · 1 + 13,0 ≤ 13 < 17            

17 = 13 · 1 + 4,0 ≤ 4 < 13 

13 = 4 · 3 + 1,0 ≤ 1 < 4 

4 = 1 · 4 + 0 

𝑔𝑔𝑔𝑔𝑑𝑑(17,30) = 1 → 17,30 are coprime 

 

Definition 
Given 𝑛𝑛 ∈ ℤ,  Euler’s 𝚽𝚽(𝐧𝐧) function as the function that indicates the cardinal of a set of positive 

coprime numbers lesser or equal than 𝑛𝑛: 
𝛷𝛷:ℕ → ℕ 

𝑛𝑛 → 𝛷𝛷(𝑛𝑛) = |{𝑥𝑥 ∈ ℕ|𝑚𝑚𝑔𝑔𝑑𝑑(𝑥𝑥,𝑛𝑛) = 1 ∧ 1 ≤ 𝑥𝑥 ≤ 𝑛𝑛}|      

Notes 
𝛷𝛷(1) = 1 

𝛷𝛷(2) = 1 

𝛷𝛷(3) = 2 

𝛷𝛷(4) = 2 (Nor 2 nor 4 match the requisites) 

𝛷𝛷(5) = 4 

 
4.1.3. Diophantine equations and Bézout’s identity 

Definition  
An equation 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 = 𝑒𝑒, with 𝑎𝑎, 𝑏𝑏, 𝑒𝑒, 𝑥𝑥, 𝑦𝑦 ∈ ℤ is called Diophantine equation.  

 

Theorem: Bézout’s identity  
Be it 𝑎𝑎, 𝑏𝑏 ∈ ℕ and 𝑑𝑑 = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑎𝑎, 𝑏𝑏). Then ∃𝑛𝑛,𝑚𝑚 ∈ ℤ such that 𝑑𝑑 = 𝑛𝑛 · 𝑎𝑎 + 𝑚𝑚 · 𝑏𝑏. 

 
Proof (exercise) 
To prove this theorem, it is enough to go backwards in the Euclidean algorithm process. 

 
Examples 
 𝑚𝑚𝑔𝑔𝑑𝑑(105,30) = 17 

105 = 30 · 3 + 15
30 = 15 · 2 + 0 � → �105 − 30 · 3 = 15 → 105 · 1 + 30 · (−3) = 15 = 𝑚𝑚𝑔𝑔𝑑𝑑(105,30) 
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 𝑔𝑔𝑔𝑔𝑑𝑑(504,396) = 36 

504 = 396 · 1 + 108
396 = 108 · 3 + 72
108 = 72 · 1 + 36

72 = 36 · 2 + 0

� → �

504 − 396 · 1 = 108
396 − 108 · 3 = 72
108 − 72 · 1 = 36 � →

⎩
⎨

⎧
36 = 108 − 72 · 1 =

= 108 − (396 − 108 · 3) · 1 = 4 · 108 − 396
= 4 · (504 − 396 · 1) − 396
= 504 · 4 + 396 · (−5)

 

 
Notes 
Be it a Diophantine equation 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 = 𝑒𝑒 with 𝑑𝑑 = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑎𝑎, 𝑏𝑏). 

Through Bézout’s identity we can affirm that ∃𝑛𝑛,𝑚𝑚 ∈ ℤ such that 𝑑𝑑 = 𝑛𝑛 · 𝑎𝑎 + 𝑚𝑚 · 𝑏𝑏. 

If we verify that 𝑑𝑑 divides 𝑒𝑒, 𝑑𝑑|𝑒𝑒 → (∃𝑞𝑞)(𝑒𝑒 = 𝑞𝑞 · 𝑑𝑑), we can infer:  
𝑒𝑒 = 𝑑𝑑 · 𝑞𝑞 = (𝑛𝑛 · 𝑎𝑎 + 𝑚𝑚 · 𝑏𝑏) · 𝑞𝑞 = 𝑎𝑎 · (𝑞𝑞 · 𝑛𝑛) + 𝑏𝑏 · (𝑞𝑞 · 𝑚𝑚) 

Hence 𝑥𝑥 = 𝑞𝑞 · 𝑛𝑛 ∧ 𝑦𝑦 = 𝑞𝑞 · 𝑚𝑚 will be solutions to Bézout’s identity and (∃𝑎𝑎′, 𝑏𝑏′)(𝑎𝑎 = 𝑎𝑎′ · 𝑑𝑑 ∧ 𝑏𝑏 = 𝑏𝑏′ · 𝑑𝑑). 

 

Theorem 
A Diophantine equation 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 = 𝑒𝑒 has a solution if and only if 𝑔𝑔𝑔𝑔𝑑𝑑(𝑎𝑎, 𝑏𝑏)|𝑒𝑒. 

In addition, if (𝑥𝑥0,𝑦𝑦0) is a solution for 𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑦𝑦 = 𝑒𝑒, the set of solutions of the equation takes the form: 

𝑆𝑆 = ��𝑥𝑥0 + 𝑘𝑘 ·
𝑏𝑏
𝑑𝑑

, 𝑦𝑦0 − 𝑘𝑘 ·
𝑎𝑎
𝑑𝑑
� |𝑘𝑘 ∈ ℤ ∧ 𝑑𝑑 = 𝑚𝑚𝑔𝑔𝑑𝑑(𝑎𝑎, 𝑏𝑏)� 

 
Proof (exercise) 
Prove 𝑔𝑔𝑔𝑔𝑑𝑑(𝑎𝑎, 𝑏𝑏)|𝑒𝑒 → (∃𝑥𝑥, 𝑦𝑦 ∈ ℤ)(𝑎𝑎 · 𝑥𝑥 + 𝑏𝑏 · 𝑦𝑦 = 𝑒𝑒) and (∃𝑥𝑥,𝑦𝑦 ∈ ℤ)(𝑎𝑎 · 𝑥𝑥 + 𝑏𝑏 · 𝑦𝑦 = 𝑒𝑒) → 𝑔𝑔𝑔𝑔𝑑𝑑(𝑎𝑎, 𝑏𝑏)|𝑒𝑒. 

To that extent, it is possible to use the prior notes. In addition, it is necessary to prove that all the 
elements of the set 𝑆𝑆 are solutions of the Diophantine equation. 

 

Example: 
To solve the Diophantine equation, we must first calculate the greatest common divisor through the 

Euclidean algorithm: 
𝑔𝑔𝑔𝑔𝑑𝑑(365,72) = 1 

365 = 72 · 5 + 5 

72 = 5 · 14 + 2 

5 = 2 · 2 + 1 

Since 1|18, according to the prior theorem, the equation has a solution. We calculate Bézout’s identity 

through the development of the Euclidean Algorithm: 
1 =
5=2·2+1

5 − 2 · 2 =
72=5·14+2

5 − 2 · (72 − 5 · 14) = 5 · 29 − 2 · 72 =
365=72·5+5

(365 − 75 · 5) · 29 − 2 · 72

= 29 · 365 + (−147)72 

Therefore 1 = 29 · 365 + (−147)72 ⇒ 18 = 29 · 18 · 365 + (−147 · 18)72 = 522 · 365 + (−2646)72 

In this manner, the solution to the equation is 𝑆𝑆 = {(522 + 𝑘𝑘 · 72,−2646 − 𝑘𝑘 · 365)|𝑘𝑘 ∈ ℤ} 
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4.2. Least common multiple 

Definition 
Given 𝑎𝑎, 𝑏𝑏 ∈ ℕ, we define 𝑚𝑚 ∈ ℕ as a least common multiple of 𝑎𝑎 and 𝑏𝑏, that is, 𝑚𝑚 = 𝑙𝑙𝑔𝑔𝑚𝑚(𝑎𝑎, 𝑏𝑏), when 

it is possible to verify that: 
1.𝑎𝑎|𝑚𝑚 ∧ 𝑏𝑏|𝑚𝑚 (that is, 𝑚𝑚 is a common multiple to 𝑎𝑎 and 𝑏𝑏) 

2.(∀𝑚𝑚′ ∈ ℕ)(𝑎𝑎|𝑚𝑚′ ∧ 𝑏𝑏|𝑚𝑚′ → 𝑚𝑚|𝑚𝑚′) (that is, any multiple of 𝑎𝑎 and 𝑏𝑏 is multiple of 𝑚𝑚 = 𝑚𝑚𝑔𝑔𝑚𝑚(𝑎𝑎, 𝑏𝑏), 

making 𝑚𝑚 the least of the common multiples of 𝑎𝑎 and 𝑏𝑏) 

 

Proposal 
Be it  𝑎𝑎, 𝑏𝑏 ∈ ℕ and 𝑑𝑑 = 𝑔𝑔𝑔𝑔𝑑𝑑(𝑎𝑎, 𝑏𝑏). 

We can verify that 𝑚𝑚 = 𝑙𝑙𝑔𝑔𝑚𝑚(𝑎𝑎, 𝑏𝑏) = 𝑎𝑎·𝑏𝑏
𝑑𝑑

. 

 
Proof (Exercise) 

It is enough to prove that conditions 1 and 2 are met for 𝑚𝑚 = 𝑎𝑎·𝑏𝑏
𝑑𝑑

 

 

Examples 

 𝑔𝑔𝑔𝑔𝑑𝑑(105,30) = 15 → 𝑙𝑙𝑔𝑔𝑚𝑚(105,30) = 105·30
15

= 210 

 𝑔𝑔𝑔𝑔𝑑𝑑(504,396) = 36 → 𝑙𝑙𝑔𝑔𝑚𝑚(504,396) = 504·396
36

= 5544 
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5. Prime numbers factorization 

Definition  
It is said that 𝑝𝑝 ∈ ℕ is a prime number if 𝑝𝑝 ≥ 2 and if the only integers that divide it are 1 and 𝑝𝑝 

𝑝𝑝 ∈ ℕ ⇔ (∀𝑛𝑛 ∈ ℤ)(𝑛𝑛|𝑝𝑝 → 𝑛𝑛 = 1 ∨ 𝑛𝑛 = 𝑝𝑝) 

 

Notes 
If 𝑝𝑝 ∈ ℕ is a prime number, then 𝛷𝛷(𝑝𝑝) = 𝑝𝑝 − 1 

 

Theorem: unique factorization based on prime numbers 
Every natural number 𝑛𝑛 ≥ 2 can be factorized as a unique product of prime numbers, except for the 

order of the factors. 

 
Proof (Exercise) 
For this theorem we must prove both the existence of the factorization and its uniqueness. 

 
Existence: 

To prove the existence, we proceed through reductio ad absurdum: 
Take the set 𝐵𝐵 = {𝑛𝑛 ∈ ℕ|𝑛𝑛 ≥ 2 ∧ 𝑛𝑛 is not factorized through prime numbers}. 

Proving the theorem is to prove that 𝐵𝐵 = ∅, hence we suppose the opposite, 𝐵𝐵 ≠ ∅. 

We take the infimum of the set 𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑛𝑛{𝑛𝑛 ∈ 𝐵𝐵}. We can suppose that it is not a prime number, 

since a prime number can be factorized by itself. 
Since 𝑚𝑚 is not a prime number, by definition there exist 𝑚𝑚1 and 𝑚𝑚2 such that 

(𝑚𝑚 = 𝑚𝑚1 · 𝑚𝑚2) ∧ �1 < 𝑚𝑚1,𝑚𝑚2 < 𝑚𝑚�. 

𝑚𝑚1,𝑚𝑚2 ∉ 𝐵𝐵, and hence they can be factorized as a product of prime numbers, which in turn means 

that 𝑚𝑚 can also be factorized through prime numbers, which contradicts 𝑚𝑚 ∈ 𝐵𝐵. 

Then, we can conclude that 𝐵𝐵 = ∅, and the existence of the factorization in prime numbers for every 

natural number is proven. 
 

Uniqueness: 

To prove uniqueness, we proceed similarly. 
We consider the set 𝐵𝐵 = {𝑛𝑛 ∈ ℕ|𝑛𝑛 ≥ 2 ∧ 𝑛𝑛 does not have a unique factorization in prime numbers} and 

prove that it is an empty set. 
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Theorem: 
Be it 𝑎𝑎, 𝑏𝑏 ∈ ℕ. The necessary and sufficient condition for 𝑎𝑎|𝑏𝑏, that is, for 𝑎𝑎 to divide 𝑏𝑏, is that 𝑏𝑏 contains 

all the prime factors of 𝑎𝑎 with equal or greater exponents. 

 
Theorem: 
The greatest common divider of two numbers 𝑎𝑎, 𝑏𝑏 ∈ ℕ is the product of the prime factors common to 

both, taking each with the lesser of the exponents with which they appear in the factorizations of the given 
numbers. 

The least common multiple of two numbers 𝑎𝑎, 𝑏𝑏 ∈ ℕ is the product of the common and non-common 

prime factors of both, taking each with the greater of the exponents with which they appear in the 

factorization of the given numbers. 

 

Proposal: 

If 𝑚𝑚 = 𝑝𝑝1
𝑛𝑛1 · 𝑝𝑝2

𝑛𝑛2 ·. . . .· 𝑝𝑝𝑠𝑠
𝑛𝑛𝑠𝑠, where ∀𝑖𝑖 ∈ {1,2, . . . 𝑠𝑠} 𝑝𝑝𝑖𝑖 is a prime number and 𝑛𝑛𝑖𝑖 is the number of times that 

𝑝𝑝𝑖𝑖  is repeated in the factorization of 𝑚𝑚 as a product of prime numbers, then: 

𝛷𝛷(𝑚𝑚) =
𝑚𝑚

𝑝𝑝1 · 𝑝𝑝2 · …  · 𝑝𝑝𝑠𝑠
· (𝑝𝑝1 − 1)(𝑝𝑝2 − 1) · … · (𝑝𝑝𝑠𝑠 − 1) 
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6. Large prime numbers and the factorization of large numbers 

When we want to verify whether a number 𝑝𝑝 is a prime number, the simplest algorithm that we can 

use is to test whether the number is divisible by all the prime numbers lesser than �𝑝𝑝. If there are no 

numbers that divide 𝑝𝑝, we can conclude that it is a prime number. If the opposite is true, we will have 

found a factor for its factorization in prime numbers. 

However, this algorithm is not valid for large prime numbers. Should we try to use it to test whether 
numbers lesser than 10100 are prime numbers, it would take us around 200 years to achieve the solution. 

In order to test whether large numbers are prime numbers, we must use primality tests that provide 
us with a probability on whether 𝑝𝑝 is a prime number. Two of the most common tests, due to their 

simplicity, are the Lehmann and Miller-Rabin primality tests. These tests are based on mathematical 

congruences, which will be analyzed further down the road. 

When the issue is to achieve the factorization of a number, we might again leverage the brute force 

algorithm based on testing all the prime numbers lesser than the value of the number’s root. Again, this 

algorithm is very slow and not effective for large numbers. There are other methods that, while less 

efficient, are quicker when dealing with large numbers: the Fermat primality test, Pollard’s p-1 algorithm, 

or quadratic factorization methods. 
 

Fermat’s primality test 
The aim of this method is to factorize a number 𝑛𝑛 ∈ ℕ by finding two other numbers 𝑥𝑥, 𝑦𝑦 ∈ ℕ such that 

𝑛𝑛 = (𝑥𝑥 + 𝑦𝑦)(𝑥𝑥 − 𝑦𝑦) = 𝑥𝑥2 − 𝑦𝑦2 . 

This way, we would obtain a factorization 𝑛𝑛 = 𝑎𝑎 · 𝑏𝑏, with 𝑎𝑎 = (𝑥𝑥 + 𝑦𝑦) and 𝑏𝑏 = (𝑥𝑥 − 𝑦𝑦). 

The steps of the algorithm are as follows: 

1. Take 𝑥𝑥0, the first integer number greater than √𝑛𝑛 

2. For every 𝑖𝑖 = 1,2, … calculate 𝑒𝑒𝑖𝑖 = 𝑥𝑥𝑖𝑖2 − 𝑛𝑛 

3. Afterwards: 

i. If 𝑒𝑒𝑖𝑖 is a perfect square, take 𝑦𝑦𝑖𝑖 = �𝑒𝑒𝑖𝑖 ∈ ℕ and 𝑛𝑛 = (𝑥𝑥𝑖𝑖 + 𝑦𝑦𝑖𝑖)(𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖) 

ii. If 𝑒𝑒𝑖𝑖 is not a perfect square take 𝑥𝑥𝑖𝑖+1 = 𝑥𝑥𝑖𝑖 + 1 and go back to step 2 

 
Notes 
 In step 3.ii, when we go back to step 2 to calculate 𝑒𝑒𝑖𝑖+1, we can use the prior iteration as follows:  

𝑒𝑒𝑖𝑖+1 = 𝑒𝑒𝑖𝑖 + 2𝑥𝑥𝑖𝑖 + 1 

Observe that: 
𝑒𝑒𝑖𝑖+1 = 𝑥𝑥𝑖𝑖+12 − 𝑛𝑛 = (𝑥𝑥𝑖𝑖 + 1)2 − 𝑛𝑛 = 𝑥𝑥𝑖𝑖2 − 𝑛𝑛�����

𝑒𝑒𝑖𝑖

+ 2𝑥𝑥𝑖𝑖 + 1 = 𝑒𝑒𝑖𝑖 + 2𝑥𝑥𝑖𝑖 + 1 

 

 In addition, we can only carry out this step if 𝑥𝑥𝑖𝑖+1 ≤
𝑛𝑛+1
2

, in other case this method will not yield a 

factorization. 
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MODULAR ARITHMETIC 
7. Modular arithmetic 

Definitions: 
Be it 𝑎𝑎, 𝑏𝑏 ∈ ℤ and 𝑚𝑚 ∈ ℕ. 

We say that 𝑎𝑎 is congruent with 𝑏𝑏 module 𝑚𝑚 if 𝑚𝑚|(𝑏𝑏 − 𝑎𝑎) 

And write it as: 𝑎𝑎 ≡ 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 or 𝑎𝑎 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 

 
With 𝑚𝑚 ∈ ℕ, for each 𝑎𝑎 ∈ ℤ we define its equivalence class module 𝑚𝑚 as:  

[𝑎𝑎]𝑚𝑚 = {𝑏𝑏 ∈ ℤ|𝑎𝑎 ≡ 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚} 

 
Exercise 
With 𝑚𝑚 ∈ ℕ, to be congruent module 𝑚𝑚 is an equivalence relationship in ℤ. To verify this, it is enough 

to prove that the relationship defined by that property is reflective, symmetric, and transitive. 

 

Notes 
 Observe that if 𝑎𝑎 ≡ 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚, by definition 𝑚𝑚|(𝑏𝑏 − 𝑎𝑎).  

Through the definition of the division relationship, this in turn means that 
(∃𝑞𝑞 ∈ ℤ)(𝑏𝑏 − 𝑎𝑎 = 𝑞𝑞 · 𝑚𝑚) ⇔ (∃𝑞𝑞 ∈ ℤ)(𝑏𝑏 = 𝑞𝑞 · 𝑚𝑚 + 𝑎𝑎) 

Then, 𝑎𝑎 is the remainder obtained by dividing 𝑏𝑏 by 𝑚𝑚.  

 With 𝑚𝑚 ∈ ℕ, the division theorem ensures that ∀𝑎𝑎 ∈ ℤ, ∃! 𝑞𝑞, 𝑟𝑟 ∈ ℤ so as 𝑎𝑎 = 𝑚𝑚 · 𝑞𝑞 + 𝑟𝑟 ∧ 0 ≤ 𝑟𝑟 < 𝑚𝑚 

If 𝑎𝑎 = 𝑚𝑚 · 𝑞𝑞 + 𝑟𝑟 ∧ 0 ≤ 𝑟𝑟 < 𝑚𝑚 with 𝑚𝑚|(𝑎𝑎 − 𝑟𝑟)  

Through the definition of the module 𝑚𝑚 congruency relationship, we can write: [𝑎𝑎]𝑚𝑚 = [𝑟𝑟]𝑚𝑚 

Hence, given 𝑚𝑚 ∈ ℕ, ∀𝑎𝑎 ∈ ℤ  there exists a unique 𝑟𝑟 ∈ ℕ such that 𝑟𝑟 ∈ [𝑎𝑎]𝑚𝑚 = [𝑟𝑟]𝑚𝑚 and 0 ≤ 𝑟𝑟 < 𝑚𝑚. 

 This element is called the canonical representative of the equivalence class [𝑎𝑎]𝑚𝑚 

 Observe that given 𝑚𝑚 ∈ ℕ, ℤ is divided into 𝑚𝑚 disjoint sets that are the equivalence classes 

module 𝑚𝑚: ℤ = [0]𝑚𝑚 ∪ [1]𝑚𝑚 ∪ [2]𝑚𝑚 ∪. . .∪ [𝑚𝑚 − 1]𝑚𝑚 

 

Definitions: 
Be it 𝑚𝑚 ∈ ℕ. 

The set ℤ𝑚𝑚 = ℤ𝑚𝑚 = {[0]𝑚𝑚, [1]𝑚𝑚, [2]𝑚𝑚, . . . , [𝑚𝑚 − 1]𝑚𝑚} is the set of integers module 𝑚𝑚. 

The binary operations addition and product in the set ℤ𝑚𝑚 are defined as: 
+:ℤ𝑚𝑚 × ℤ𝑚𝑚 → ℤ𝑚𝑚 | ([𝑎𝑎]𝑚𝑚, [𝑏𝑏𝑚𝑚]) → [𝑎𝑎]𝑚𝑚 + [𝑏𝑏𝑚𝑚]: = [𝑎𝑎 + 𝑏𝑏]𝑚𝑚 

 ·:  ℤ𝑚𝑚 × ℤ𝑚𝑚 → ℤ𝑚𝑚  | ([𝑎𝑎]𝑚𝑚, [𝑏𝑏𝑚𝑚]) → [𝑎𝑎]𝑚𝑚 · [𝑏𝑏𝑚𝑚]: = [𝑎𝑎 · 𝑏𝑏]𝑚𝑚  

The arithmetic defined in ℤ𝑚𝑚 by these operations is called modular arithmetic. 
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Proposal: 
1. The result of the addition and product in ℤ𝑚𝑚 do not depend on the canonical representative in the 

equivalence class: 

[𝑎𝑎]𝑚𝑚 = [𝑎𝑎′]𝑚𝑚 ∧ [𝑏𝑏]𝑚𝑚 = [𝑏𝑏′]𝑚𝑚 ⇒ �
[𝑎𝑎]𝑚𝑚 + [𝑏𝑏]𝑚𝑚 = [𝑎𝑎′]𝑚𝑚 + [𝑏𝑏′]𝑚𝑚 ⇔ [𝑎𝑎 + 𝑏𝑏]𝑚𝑚 = [𝑎𝑎′ + 𝑏𝑏′]𝑚𝑚
[𝑎𝑎]𝑚𝑚 · [𝑏𝑏]𝑚𝑚 = [𝑎𝑎′]𝑚𝑚 · [𝑏𝑏′]𝑚𝑚 ⇔ [𝑎𝑎 · 𝑏𝑏]𝑚𝑚 = [𝑎𝑎′ · 𝑏𝑏′]𝑚𝑚

 

2. These operations verify the first 6 axioms of arithmetic in ℤ. 

(A.14) They are closed operations in ℤ𝑚𝑚. 

(A.15) Commutative law 

(A.16) Associative law 

(A.17) Existence of identity elements 

(A.18) Distributive law 
(A.19) Existence of an inverse element 

 
Notes 
 One of the most important differences between ℤ and ℤ𝑚𝑚 is that the cancellation law of integer 

numbers (A.7) (∀𝑛𝑛 ∈ ℤ) �𝑛𝑛 ≠ 0 → �(∀𝑚𝑚, 𝑘𝑘 ∈ ℤ)(𝑛𝑛 · 𝑚𝑚 = 𝑛𝑛 · 𝑘𝑘 → 𝑚𝑚 = 𝑘𝑘)�� is not verified in the set of 

integers module 𝑚𝑚. 

Counterexample: 
3 · 1 = 3 · 5𝑚𝑚𝑚𝑚𝑑𝑑 6 ∧ 3 ≠ 0𝑚𝑚𝑚𝑚𝑑𝑑 6 but 1 ≠ 5𝑚𝑚𝑚𝑚𝑑𝑑 6 

Notation 
From now on, when we write 𝑎𝑎 ∈ ℤ𝑚𝑚 or 𝑎𝑎𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 we will be taking representative 𝑎𝑎 as its equivalence 

class [𝑎𝑎]𝑚𝑚.  
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8. Invertible elements 

Definitions 
Given 𝑚𝑚 ∈ ℕ, it is said that an element 𝑟𝑟 ∈ ℤ𝑚𝑚 is invertible if there is any 𝑥𝑥 ∈ ℤ𝑚𝑚 such that: 

𝑟𝑟 · 𝑥𝑥 = 1𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 

In that case, we will say that 𝑥𝑥 is an inverse of 𝑟𝑟, and define it as 𝑟𝑟−1 

 

Theorem 
Element 𝑟𝑟 ∈ ℤ𝑚𝑚 is invertible if and only if 𝑟𝑟 and 𝑚𝑚 are coprime.  

 
Proof (exercise) 
In order to prove the theorem, we must verify two implications. First, we must verify that if 𝑟𝑟 ∈ ℤ𝑚𝑚 is 

invertible then 𝑟𝑟 and 𝑚𝑚 are coprime. To that extent, it is enough to use the definition and characterization 

of coprime numbers. Secondly, we must verify that if 𝑟𝑟 and 𝑚𝑚 are coprime then 𝑟𝑟 ∈ ℤ𝑚𝑚 is invertible. To 

achieve that conclusion, it is necessary to use Bézout’s identity. 
 

Corollary 

If 𝑝𝑝 is a prime number, every element of ℤ𝑝𝑝 different from zero is invertible. 

 
Proof (exercise) 
The corollary is a direct consequence of the theorem. 

 
Example 
We want to discern whether 31 has an inverse module 97, and in case it does, calculate it. 
Through the theorem, 31 has an inverse module 97 if 𝑚𝑚𝑔𝑔𝑑𝑑(31,97) = 1. 

Through the Euclidean algorithm, we have that: 
97 = 31 · 3 + 4 

31 = 4 · 7 + 3 

4 = 3 · 1 + 1  

 
Then, 𝑚𝑚𝑔𝑔𝑑𝑑(31,97) = 1, and we can affirm that there is an inverse of 31 module 97. We could also 

have applied the corollary, since 97 is a prime number. In order to calculate the inverse, we can leverage 
Bézout’s identity: 

1 = 4 − 3 ⋅ 1 = 4 − (31 − 4 ⋅ 7) = 8 ⋅ 4 − 31 = 8 ⋅ (97 − 31 ⋅ 3) − 31 =  97 ⋅ 8 + 31 ⋅ (−25) 
31 · (−25) = 1𝑚𝑚𝑚𝑚𝑑𝑑 97 ⇔ 31−1 = −25 = 72𝑚𝑚𝑚𝑚𝑑𝑑 97 

 
This implies that 31 · (−25) = 1𝑚𝑚𝑚𝑚𝑑𝑑 97, and 31−1 = −25 = 72𝑚𝑚𝑚𝑚𝑑𝑑 97 is the inverse of 31𝑚𝑚𝑚𝑚𝑑𝑑 97, that is, 
(31 · 72 = 1𝑚𝑚𝑚𝑚𝑑𝑑 97). Observe that we took as an inverse the canonical representative of the equivalence 
class of (−4) module 97. In that way, we can consider the inverse of each invertible element as unique. 
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9. Euler’s function. Theorems of Euler and Fermat. 

Let us remember the definition of Euler’s function:  
∀𝑚𝑚 ≥ 1 𝛷𝛷(𝑚𝑚) is the number of natural numbers 𝑥𝑥 ∈ ℕ such that 1 ≤ 𝑥𝑥 < 𝑚𝑚 and 𝑚𝑚𝑔𝑔𝑑𝑑(𝑥𝑥,𝑚𝑚) = 1, that 

is, lesser than and coprime with 𝑚𝑚. 

Through the prior theorem, the value for Euler’s function 𝛷𝛷(𝑚𝑚) matches the number of invertible 

integer numbers in ℤ𝑚𝑚. 

 

Euler’s theorem 

If 𝑚𝑚𝑔𝑔𝑑𝑑(𝑚𝑚, 𝑟𝑟) = 1 then 𝑟𝑟𝛷𝛷(𝑚𝑚) = 1𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚. 

 
Proof (exercise) 
To verify this theorem, we take the set composed by the invertible elements module 𝑚𝑚: 

𝐼𝐼𝑚𝑚 = {𝑥𝑥 ∈ ℤ𝑚𝑚 | 𝑥𝑥 is invertible} 

Since 𝑚𝑚𝑔𝑔𝑑𝑑(𝑚𝑚, 𝑟𝑟) = 1, we have that  𝑟𝑟 ∈ 𝐼𝐼𝑚𝑚 ⇒ 𝐼𝐼𝑚𝑚 ≠ ∅. 

In addition, the number of elements of 𝐼𝐼𝑚𝑚 is 𝛷𝛷(𝑚𝑚): |𝐼𝐼𝑚𝑚| = 𝛷𝛷(𝑚𝑚). 

We can express 𝐼𝐼𝑚𝑚 as 𝐼𝐼𝑚𝑚 = �𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝛷𝛷(𝑚𝑚)� 

We define the set 𝑟𝑟 · 𝐼𝐼𝑚𝑚 = {𝑧𝑧 ∈ ℤ𝑚𝑚|(∃𝑥𝑥 ∈ 𝐼𝐼𝑚𝑚)(𝑧𝑧 = 𝑟𝑟 · 𝑥𝑥𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚)} and prove that 𝑟𝑟 · 𝐼𝐼𝑚𝑚 = 𝐼𝐼𝑚𝑚  

To that extent, it is enough to prove the contents in both directions (exercise). 
Be 𝑥𝑥 = 𝑥𝑥1 · 𝑥𝑥2 ·. . .· 𝑥𝑥𝛷𝛷(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 an invertible element of ℤ𝑚𝑚, and 𝑥𝑥−1 = 𝑥𝑥−1𝛷𝛷(𝑚𝑚) ·. . .· 𝑥𝑥2−1 · 𝑥𝑥1−1 · 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 

its inverse 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚. 

Since 𝐼𝐼𝑚𝑚 = 𝑟𝑟 · 𝐼𝐼𝑚𝑚, the set 𝑟𝑟 · 𝐼𝐼𝑚𝑚 = �𝑟𝑟 · 𝑥𝑥1, 𝑟𝑟 · 𝑥𝑥2, . . . , 𝑟𝑟 · 𝑥𝑥𝛷𝛷(𝑚𝑚)� is nothing but a rearrangement of the set 

𝐼𝐼𝑚𝑚 = �𝑥𝑥1, 𝑥𝑥2, . . . , 𝑥𝑥𝛷𝛷(𝑚𝑚)�, hence:  

𝑥𝑥 = 𝑥𝑥1 · 𝑥𝑥2 ·. . .· 𝑥𝑥𝛷𝛷(𝑚𝑚) = (𝑟𝑟 · 𝑥𝑥1) · (𝑟𝑟 · 𝑥𝑥2) ·. . .· �𝑟𝑟 · 𝑥𝑥𝛷𝛷(𝑚𝑚)� = 𝑟𝑟𝛷𝛷(𝑚𝑚) · 𝑥𝑥1 · 𝑥𝑥2 ·. . .· 𝑥𝑥𝛷𝛷(𝑚𝑚) = 𝑟𝑟𝛷𝛷(𝑚𝑚) · 𝑥𝑥𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 

Multiplying both parts by 𝑥𝑥−1 we obtain: 1 = 𝑥𝑥 · 𝑥𝑥−1 = 𝑟𝑟𝛷𝛷(𝑚𝑚) · 𝑥𝑥 · 𝑥𝑥−1 = 𝑟𝑟𝛷𝛷(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚, as we wanted to 

prove. 

 

Fermat’s theorem 
If 𝑝𝑝 is a prime number and 𝑝𝑝 | 𝑟𝑟 (𝑝𝑝 does not divide 𝑟𝑟), then 𝑟𝑟𝑝𝑝−1 = 1𝑚𝑚𝑚𝑚𝑑𝑑 𝑝𝑝 

 
Proof (exercise) 
Proof of this theorem can be immediately achieved from the prior theorem. 
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10. Congruencies resolution 

10.1. First degree congruencies 
A first-degree congruency is an equation that takes the form: 𝑎𝑎 · 𝑥𝑥 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 

Where 𝑎𝑎, 𝑏𝑏 ∈ ℤ𝑚𝑚 and 𝑥𝑥 is the unknown value. 

 

Theorem 
The congruency 𝑎𝑎 · 𝑥𝑥 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 has a solution if and only if 𝑚𝑚𝑔𝑔𝑑𝑑(𝑎𝑎,𝑚𝑚)|𝑏𝑏. 

 

Proof (exercise) 
Proof is clear from Bézout’s identity and the definition of congruency. Remember that there are two 

implications that need to be verified. 

  
Corollary 
1. If 𝑚𝑚𝑔𝑔𝑑𝑑(𝑎𝑎,𝑚𝑚) = 1, the congruency 𝑎𝑎 ⋅ 𝑥𝑥 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 has a single solution. 

2. If 𝑚𝑚𝑔𝑔𝑑𝑑(𝑎𝑎,𝑚𝑚) = 𝑑𝑑 ≠ 1 and 𝑑𝑑|𝑏𝑏, then the congruency 𝑎𝑎 ⋅ 𝑥𝑥 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 has 𝑑𝑑 different solutions such 

that, if 𝑥𝑥0 is a solution, then �𝑥𝑥0, 𝑥𝑥0 + 𝑚𝑚
𝑑𝑑

, 𝑥𝑥0 + 2 𝑚𝑚
𝑑𝑑

, . . . . , 𝑥𝑥0 + (𝑑𝑑 − 1)𝑚𝑚
𝑑𝑑
� is the set of all the solutions 

module 𝑚𝑚. 

 
Proof (exercise) 

1. It is easy to see that if 𝑚𝑚𝑔𝑔𝑑𝑑(𝑎𝑎,𝑚𝑚) = 1, we have 𝑎𝑎−1 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 so that 𝑥𝑥 = 𝑎𝑎−1 · 𝑎𝑎 · 𝑥𝑥 = 𝑎𝑎−1 · 𝑏𝑏 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 

is a solution for the congruency 𝑎𝑎 ⋅ 𝑥𝑥 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚. In addition, the solution is unique module 𝑚𝑚, since 

the invers is unique module 𝑚𝑚. 

2. If 𝑚𝑚𝑔𝑔𝑑𝑑(𝑎𝑎,𝑚𝑚)|𝑏𝑏, the prior theorem affirms that the congruency 𝑎𝑎 ⋅ 𝑥𝑥 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 has a solution. 

Since 𝑑𝑑|𝑎𝑎,𝑑𝑑|𝑚𝑚 ∧ 𝑑𝑑|𝑏𝑏, there are 𝑎𝑎0,𝑚𝑚0, 𝑏𝑏0 ∈ ℕ such that 𝑎𝑎 = 𝑎𝑎0 · 𝑑𝑑,𝑚𝑚 = 𝑚𝑚𝑜𝑜 · 𝑑𝑑 and 𝑏𝑏 = 𝑏𝑏0 · 𝑑𝑑, verifying 

that 𝑚𝑚𝑔𝑔𝑑𝑑(𝑎𝑎0,𝑚𝑚0) = 1. Through step 1 of this proof, if 𝑚𝑚𝑔𝑔𝑑𝑑(𝑎𝑎0,𝑚𝑚0) = 1, congruency 𝑎𝑎0 ⋅ 𝑥𝑥 = 𝑏𝑏0 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚0 

has a unique solution of the form: 𝑥𝑥0 = 𝑎𝑎0−1 · 𝑏𝑏0 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚0. 

Through the definition of congruency, we have that: 
𝑥𝑥0 = 𝑎𝑎0−1 · 𝑏𝑏0 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚0 ↔ (∃𝑞𝑞 ∈ ℤ)(𝑥𝑥0 = 𝑚𝑚0 · 𝑞𝑞 + 𝑎𝑎0−1 · 𝑏𝑏0) ↔ 𝑎𝑎0 · 𝑥𝑥0 = 𝑎𝑎0 · 𝑚𝑚0 · 𝑞𝑞 + 𝑏𝑏0 

Hence, since 𝑚𝑚 = 𝑚𝑚0 · 𝑑𝑑: 
𝑥𝑥0 − 𝑎𝑎0−1 · 𝑏𝑏0 =𝑚𝑚0 ⋅ 𝑞𝑞 ⋅𝑑𝑑

↔ (𝑥𝑥0 − 𝑎𝑎0−1 · 𝑏𝑏0) ⋅ 𝑑𝑑 =  𝑑𝑑 ⋅ 𝑚𝑚0 ⋅ 𝑞𝑞 

(𝑥𝑥0 − 𝑎𝑎0−1 · 𝑏𝑏0) ⋅ 𝑑𝑑 =  𝑑𝑑 ⋅ 𝑚𝑚0 ⋅ 𝑞𝑞  
𝑚𝑚=𝑚𝑚0⋅𝑑𝑑
𝑏𝑏=𝑏𝑏0⋅𝑑𝑑

𝑐𝑐𝑜𝑜𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑛𝑛𝑐𝑐𝑐𝑐 𝑑𝑑𝑒𝑒𝑑𝑑𝑖𝑖𝑛𝑛𝑖𝑖𝑑𝑑𝑖𝑖𝑜𝑜𝑛𝑛

�⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯�  𝑥𝑥0 ⋅ 𝑑𝑑 − 𝑎𝑎0−1 · 𝑏𝑏 = 0𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 

 
𝑥𝑥0 ⋅ 𝑑𝑑 − 𝑎𝑎0−1 · 𝑏𝑏 = 0𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚   

⋅𝑎𝑎0
��  𝑎𝑎0 · 𝑥𝑥0 ⋅ 𝑑𝑑 − 𝑎𝑎0 · 𝑎𝑎0−1 · 𝑏𝑏 = 0𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚  

𝑎𝑎0 · 𝑥𝑥0 ⋅ 𝑑𝑑 − 𝑎𝑎0 · 𝑎𝑎0−1 · 𝑏𝑏 = 0𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚   
𝑎𝑎=𝑎𝑎0⋅ 𝑑𝑑
𝑎𝑎0·𝑎𝑎0

−1=1

�⎯⎯⎯⎯⎯�  𝑥𝑥0 ⋅ 𝑎𝑎 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 
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Therefore, we have that 𝑥𝑥0 = 𝑎𝑎0−1 · 𝑏𝑏0 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚0 is a solution for congruency 𝑎𝑎 ⋅ 𝑥𝑥 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚 

In addition, if 𝑥𝑥 = 𝑥𝑥0 + 𝑘𝑘 · 𝑚𝑚0, 𝑘𝑘 ∈ {0,1, . . . , (𝑑𝑑 − 1)} it is verified that it is also a solution for congruency 
𝑎𝑎 · 𝑥𝑥 = 𝑎𝑎 · (𝑥𝑥0 + 𝑘𝑘 · 𝑚𝑚0) = 𝑎𝑎 · 𝑥𝑥0 + 𝑎𝑎 · 𝑘𝑘 · 𝑚𝑚0 =

𝑎𝑎=𝑎𝑎0·𝑑𝑑
𝑏𝑏 + 𝑎𝑎0 · 𝑘𝑘 · 𝑑𝑑 · 𝑚𝑚0 =

𝑚𝑚=𝑚𝑚0·𝑑𝑑
𝑏𝑏 + 𝑎𝑎0 · 𝑘𝑘 · 𝑚𝑚 = 𝑏𝑏𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚 

 
Example 
Solve 12 · 𝑥𝑥 = 6𝑚𝑚𝑚𝑚𝑑𝑑 15. 

Since 𝑚𝑚𝑔𝑔𝑑𝑑(12,15) = 3 ∧ 3|6, applying the prior theorem we can affirm that that the congruency has a 

solution. 

15 = 12 + 3 � ⇒ 𝑚𝑚𝑔𝑔𝑑𝑑(15,12) = 3 

From Bézout’s identity 3 = 15 − 1 · 12, multiplying by 2 = 12/6 we obtain: 
3 · 2 = 2 · 15 − 2 · 12 ⇒ (−2) · 12 = 3𝑚𝑚𝑚𝑚𝑑𝑑 15 

And then 𝑥𝑥 = −2 = 13𝑚𝑚𝑚𝑚𝑑𝑑 15 is a solution for the congruency. To obtain the set of all the solutions, 

it is enough to consider the prior corollary: 

�13,13 +
15
3

, 13 + 2 ·
15
3
� = {13,18,23} = {13,3,8} 

Effectively, we can now observe that: 

12 · 13 = 156 = 15 · 10 + 6 = 6𝑚𝑚𝑚𝑚𝑑𝑑 1 5 

12 · 3 = 36 = 15 · 2 + 6 = 6𝑚𝑚𝑚𝑚𝑑𝑑 1 5 

12 · 8 = 96 = 15 · 6 + 6 = 6𝑚𝑚𝑚𝑚𝑑𝑑 1 5 

 
Exercise 
Solve congruency 111 · 𝑥𝑥 = 75𝑚𝑚𝑚𝑚𝑑𝑑 321 

 

10.2. Linear congruency systems 

A system of linear congruencies is an equation system that takes the form: 

�

𝑥𝑥 = 𝑎𝑎1 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚1
𝑥𝑥 = 𝑎𝑎2 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚2
⋮
𝑥𝑥 = 𝑎𝑎𝑘𝑘 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑘𝑘

 

Where 𝑚𝑚𝑔𝑔𝑑𝑑�𝑚𝑚𝑖𝑖 ,𝑚𝑚𝑗𝑗� = 1 if 𝑖𝑖 ≠ 𝑗𝑗. 

 

Chinese remainder theorem 

The congruency system �

𝑥𝑥 = 𝑎𝑎1 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚1
𝑥𝑥 = 𝑎𝑎2 𝑚𝑚𝑚𝑚𝑑𝑑 𝑚𝑚2
⋮
𝑥𝑥 = 𝑎𝑎𝑘𝑘 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑘𝑘

 with 𝑚𝑚𝑔𝑔𝑑𝑑�𝑚𝑚𝑖𝑖 ,𝑚𝑚𝑗𝑗� = 1 if 𝑖𝑖 ≠ 𝑗𝑗 has a solution. 

 
If 𝑥𝑥 and 𝑥𝑥′ are solutions for the congruency system, then 𝑥𝑥 = 𝑥𝑥′𝑚𝑚𝑚𝑚𝑑𝑑𝑀𝑀 with 𝑀𝑀 = 𝑚𝑚1 · 𝑚𝑚2 ·. . .· 𝑚𝑚𝑘𝑘. 
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Proof 

Proof of this theorem is constructive. From it, it is possible to define the steps that must be followed 

to solve a system of congruencies. 

Be it 𝑀𝑀 = 𝑚𝑚1 · 𝑚𝑚2 ·. . .· 𝑚𝑚𝑘𝑘 and 𝑀𝑀𝑖𝑖 = 𝑀𝑀
𝑚𝑚𝑖𝑖
∀𝑖𝑖 ∈ {1,2, . . . , 𝑘𝑘}. 

We have that 𝑚𝑚𝑔𝑔𝑑𝑑(𝑀𝑀𝑖𝑖 ,𝑚𝑚𝑖𝑖) = 1,∀𝑖𝑖 ∈ {1,2, . . . , 𝑘𝑘}. 

Bézout’s identity ensures that ∀𝑖𝑖 ∈ {1,2, . . . , 𝑘𝑘} there are 𝑁𝑁𝑖𝑖 ,𝑃𝑃𝑖𝑖 ∈ ℤ so that 𝑀𝑀𝑖𝑖 · 𝑁𝑁𝑖𝑖 + 𝑚𝑚𝑖𝑖 · 𝑃𝑃𝑖𝑖 = 1. 

Having 𝑥𝑥 = ∑ 𝑎𝑎𝑖𝑖 · 𝑀𝑀𝑖𝑖 · 𝑁𝑁𝑖𝑖 =𝑘𝑘
𝑖𝑖=1 𝑎𝑎1 · 𝑀𝑀1 · 𝑁𝑁1 + 𝑎𝑎2 · 𝑀𝑀2 · 𝑁𝑁2+. . . +𝑎𝑎𝑘𝑘 · 𝑀𝑀𝑘𝑘 · 𝑁𝑁𝑘𝑘 as a solution for the system, 

it is enough to observe that 𝑀𝑀𝑖𝑖 = 0𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑗𝑗 if 𝑖𝑖 ≠ 𝑗𝑗 and therefore: 

𝑥𝑥 = 𝑎𝑎1 · 𝑀𝑀1 · 𝑁𝑁1 + 𝑎𝑎2 · 𝑀𝑀2 · 𝑁𝑁2+. . . +𝑎𝑎𝑖𝑖 · 𝑀𝑀𝑖𝑖 · 𝑁𝑁𝑖𝑖+. . . +𝑎𝑎𝑘𝑘 · 𝑀𝑀𝑘𝑘 · 𝑁𝑁𝑘𝑘 = 𝑎𝑎𝑖𝑖 · 𝑀𝑀𝑖𝑖 · 𝑁𝑁𝑖𝑖 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖 ∀𝑖𝑖 ∈ {1,2, . . . 𝑘𝑘} 

Since 𝑀𝑀𝑖𝑖 · 𝑁𝑁𝑖𝑖 + 𝑚𝑚𝑖𝑖 · 𝑃𝑃𝑖𝑖 = 1, we also have that 𝑀𝑀𝑖𝑖 · 𝑁𝑁𝑖𝑖 = 1𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖 and then:  

𝑥𝑥 = �𝑎𝑎𝑖𝑖 · 𝑀𝑀𝑖𝑖 · 𝑁𝑁𝑖𝑖 =
𝑘𝑘

𝑖𝑖=1

𝑎𝑎𝑖𝑖 · 𝑀𝑀𝑖𝑖 · 𝑁𝑁𝑖𝑖 = 𝑎𝑎𝑖𝑖 · 1 = 𝑎𝑎𝑖𝑖 𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖 ∀𝑖𝑖 ∈ {1,2, . . . 𝑘𝑘} 

On the other hand, if 𝑥𝑥 and 𝑥𝑥′ are solutions for the congruency system, 𝑥𝑥 = 𝑥𝑥′𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚𝑖𝑖 ∀𝑖𝑖 ∈ {1,2. . . 𝑘𝑘}. 

This means that 𝑚𝑚𝑖𝑖|(𝑥𝑥 − 𝑥𝑥′) ∀𝑖𝑖 ∈ {1,2, . . . , 𝑘𝑘} and since 𝑚𝑚𝑔𝑔𝑑𝑑�𝑚𝑚𝑖𝑖,𝑚𝑚𝑗𝑗� = 1 if 𝑖𝑖 ≠ 𝑗𝑗, we can affirm that 

𝑀𝑀 = 𝑚𝑚1 · 𝑚𝑚2 ·. . .· 𝑚𝑚𝑘𝑘|(𝑥𝑥 − 𝑥𝑥′). 

 

Example  

Solve the following congruency system: 

�
2𝑥𝑥 = 1𝑚𝑚𝑚𝑚𝑑𝑑 5
𝑥𝑥 = 2𝑚𝑚𝑚𝑚𝑑𝑑 6
𝑥𝑥 = 3𝑚𝑚𝑚𝑚𝑑𝑑 7

 

In order to be able to apply the Chinese remainder theorem, it is necessary for all the equation of 
the system to have the form 𝑥𝑥 = 𝑎𝑎𝑚𝑚𝑚𝑚𝑑𝑑𝑚𝑚, that is, 𝑥𝑥 must be isolated.  

In the given system, the first equation takes the form 2𝑥𝑥 = 1𝑚𝑚𝑚𝑚𝑑𝑑 5, thus, 𝑥𝑥 is not isolated. In order 
to isolate it, it is necessary to multiply both sides of the equality by the inverse of 2𝑚𝑚𝑚𝑚𝑑𝑑 5, in this case, 3 
(2 ⋅ 3 = 6 = 1𝑚𝑚𝑚𝑚𝑑𝑑 5). Through this modification, the first equation of the system becomes 𝑥𝑥 = 3𝑚𝑚𝑚𝑚𝑑𝑑 5. 

Hence, 𝑎𝑎1 = 3. Through the theorem, we obtain 𝑁𝑁1 = −2, 𝑁𝑁2 = −1, 𝑁𝑁3 = −3, and 𝑀𝑀 = 210.  

With these values, we can then build the solution as follows: 

𝑥𝑥 = 42 ⋅ (−2) ⋅ 3 + 35 ⋅ (−1) ⋅ 2 + 30 ⋅ (−3) ⋅ 3 = −592 = 38𝑚𝑚𝑚𝑚𝑑𝑑 210 

 
  



  UNIT 3.  
 Modular arithmetic 
 Basic concepts 
 

   

África Domingo   Discrete mathematics 24 

 
References 
Enderton, Herbert B. “A mathematical introduction to logic”. Elsevier, 2001.  

Norman L. Biggs, “Discrete mathematics”. Oxford University Press, 2002. 

R. Johnsonbaugh, “Discrete mathematics”. Prentice Hall, 1997. 

Ralph P Grimaldi, "Discrete and Combinatorial Mathematics: An Applied Introduction". Addison-Wesley, 

1994. 
W. K. Grassmann and J.P. Tremblay, “Logic and discrete mathematics : a computer science perspective”. 

Prentice Hall, 1996. 

 


	INTEGER NUMBERS
	1. Integer number arithmetic
	2. Ordering of integer numbers
	3. Induction principle
	4. Division, quotient, and remainder
	4.1. Greatest Common Divisor
	4.1.1. Euclidean algorithm
	4.1.2. Coprime numbers and the Euler’s phi function
	4.1.3. Diophantine equations and Bézout’s identity

	4.2. Least common multiple

	5. Prime numbers factorization
	6. Large prime numbers and the factorization of large numbers
	MODULAR ARITHMETIC
	7. Modular arithmetic
	8. Invertible elements
	9. Euler’s function. Theorems of Euler and Fermat.
	10. Congruencies resolution
	10.1. First degree congruencies
	10.2. Linear congruency systems

	References

