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THEORETICAL CONTENTS 
   

1. Cryptography 
Cryptography (from Ancient Greek κρυπτός, kryptós, "hidden, secret"; and γράφειν, graphein, "to 

write"; literally "secret writing") is the art or science of ciphering or deciphering information using 
techniques that enable an exchange of messages in such a way that they can only be read by the people 
to whom they are directed. 

The end goal of cryptography is, in the first place, to guarantee the secret communication between 
two entities (people, organizations, etc.) and, secondly, to ensure that the information that is sent is 
authentic in two ways: that the identity of the sender is true, and that the content of the message (usually 
called cryptogram) has not been modified in transit. 

The focus of this unit is set on the first goal of cryptography, that is, to analyze the different 
cryptographic mechanisms and ways of ciphering and deciphering information. We will study algorithms 
that, given a message 𝑀𝑀 = 𝑎𝑎1𝑎𝑎2. . . 𝑎𝑎𝑘𝑘 composed by different symbols (𝑎𝑎𝑖𝑖), transform it into another 

ciphered message 𝐶𝐶 = 𝑐𝑐1𝑐𝑐2. . . 𝑐𝑐𝑟𝑟 in a reversible manner, that is, algorithms that are also capable of 
translating the ciphered message back into the original message. 

There are two historical eras in the field of cryptographic mechanisms. In the first one, we consider 
systems prior to WWII, prior to the first computers. The mechanisms belonging to this first era were 
implemented and used through pen and paper. The inception of computers made the messages that 
employed these codes trivial to decipher, and hence no longer useful to guarantee the secret of 
communications, causing these methods to rapidly fall into disuse. This first era is called classic 
cryptography, or private key cryptography. 

 The transition towards modern cryptography or public key cryptography started during WWII, when 
the allied intelligence services were able to decipher the mechanisms of the machine used by Nazi 
Germany, ENIGMA.  
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2. Private key cryptography  
Private key algorithms, also called symmetrical algorithms, are characterized by the usage of the same 

key for the ciphering and deciphering of messages.  
 
a. Monoalphabetic cyphers 
Monoalphabetic cyphers are cryptographic algorithms that establish a correspondence between the 

symbols of the original message and the ciphered message in a unique way (that is, two symbols that are 
equal between them are translated into other symbols that are equal between them). These algorithms 
do not rearrange the symbols that compose the message when it is ciphered. 
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 and if 𝑎𝑎𝑖𝑖 = 𝑎𝑎𝑗𝑗 → 𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑗𝑗  

 

i. Caesar’s algorithm 
It is one the simplest cryptographic algorithms. It takes its name from Julius Caesar, who used the 

algorithm to cipher his messages. The algorithm consists in swapping a letter for a letter 3 spaces above 
it in the alphabet. If we consider an alphabet of 𝑚𝑚 letters and assign non-negative integer numbers to the 
letters by their order: 

A B C D … 
0 1 2 3 … 

 
The cryptographic transformation would be: 

𝐶𝐶 = 𝑀𝑀 + 3𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 
Where 𝐶𝐶 represents the ciphered version of 𝑀𝑀, 𝑀𝑀 is the number that corresponds to the letter in the 

original message by the defined table, and 𝑚𝑚 is the number of letters in the alphabet that we consider in 

order to build our messages. To decipher the message, it is enough to subtract 3 module 𝑚𝑚: 
𝑀𝑀 = 𝐶𝐶 − 3𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 
Example 
Cipher through Caesar’s algorithm the message ‘VINI VIDI VINCI’ considering the standard 26-letter 

English alphabet. First, we take the table that assigns numbers to each letter in the alphabet: 
 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
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MESSAGE  𝐶𝐶 = 𝑀𝑀 + 3𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  CIPHERED MESSAGE 
V 21 24 = 21 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 24 Y 
I 8 11 = 8 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 11 L 
N 13 16 = 13 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 16 Q 
I 8 11 = 8 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 11 L 
V 21 24 = 21 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 24 Y 
I 8 11 = 8 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 11 L 
D 3 6 = 3 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 6 G 
I 8 11 = 8 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 11 L 
V 21 24 = 21 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 24 Y 
I 8 11 = 8 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 11 L 
N 13 16 = 13 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 16 Q 
C 2 5 = 2 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 5 F 
I 8 11 = 8 + 3𝑚𝑚𝑚𝑚𝑚𝑚 2 6 11 L 

 
The ciphered message takes the form: ‘YLQL YLGL YLQFL’ 
 

ii. Affine cipher 
The affine cipher is a generalization of Caesar’s algorithm. Equally to Caesar’s algorithm, the affine 

cipher considers an alphabet of 𝑚𝑚 letters, and assigns non-negative integer numbers to the letters by 
order of appearance: 

A B C D … 
0 1 2 3 … 

 
The key 𝑘𝑘 for the cipher is given by the pair 𝑘𝑘 = (𝑎𝑎, 𝑏𝑏), where 𝑎𝑎, 𝑏𝑏 ∈ ℤ𝑚𝑚. 
In this case, the cryptographic transformation takes the form 𝐶𝐶 = 𝑎𝑎𝑀𝑀 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, where 𝑀𝑀 is the 

number that corresponds to the letter of the original message according to the prior table and 𝐶𝐶 represents 
the cryptographic transformation of 𝑀𝑀. To decipher the message, we use 𝑀𝑀 = 𝑎𝑎−1 · 𝐶𝐶 − 𝑎𝑎−1 · 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 
Note  
In order to be able to decipher messages ciphered by the affine cipher, it is necessary for 𝑎𝑎 to be 

invertible module 𝑚𝑚. 
 
Example 
Decipher the message ‘KAM MA’, ciphered through the affine cipher with key (9,4) and the standard 

26-letter English alphabet. 
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In this case, 𝑎𝑎 = 9 and 𝑏𝑏 = 4. In order to be able to decipher the message, we must find the inverse 
of 𝑎𝑎 = 9𝑚𝑚𝑚𝑚𝑚𝑚 26. We develop the Euclidean algorithm to invert the process and reach Bézout’s identity, 
from which we can find the inverse that we are looking for.  

26 = 9 · 2 + 8  

9 = 8 + 1   
Observe that 𝑔𝑔𝑐𝑐𝑚𝑚(26,9) = 1 and then we can affirm that 9 has an inverse module 26. 

1 = 9− 8 = 9− (26 − 9 · 2) = 9 · 3− 26 = 9 · 3𝑚𝑚𝑚𝑚𝑚𝑚 26 

Hence 𝑎𝑎−1 = 3𝑚𝑚𝑚𝑚𝑚𝑚 26 
In order to decipher the message, we must use the expression 𝑀𝑀 = 𝑎𝑎−1 · 𝐶𝐶 − 𝑎𝑎−1 · 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚, tailored 

for the values of the problem: 𝑀𝑀 = 3 · 𝐶𝐶 − 3 · 4𝑚𝑚𝑚𝑚𝑚𝑚 26 
We take the table that assigns numbers to each letter of the alphabet in order to interpret letters as 

numbers, thus becoming able to apply congruencies.  
 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

 

CIPHERED MESSAGE C 𝑀𝑀 = 3 · 𝐶𝐶 − 3 · 4𝑚𝑚𝑚𝑚𝑚𝑚 26 M pESSAGE 
K 10 18 = 3 · 10− 3 · 4𝑚𝑚𝑚𝑚𝑚𝑚 26 18 S 
A 0 14 = −3 · 4𝑚𝑚𝑚𝑚𝑚𝑚 26 14 O 
M 12 24 = 3 · 12− 3 · 4𝑚𝑚𝑚𝑚𝑚𝑚 26 24 Y 
M 12 24 = 3 · 12− 3 · 4𝑚𝑚𝑚𝑚𝑚𝑚 26 24 Y 
A 0 14 = −3 · 4𝑚𝑚𝑚𝑚𝑚𝑚 26 14 O 

 
The original message was: ‘SOY YO’ (Spanish for IT’S ME) 
 
iii. General monoalphabetic cipher 

For each letter of the alphabet, another symbol or letter is chosen, such that the selection of the cipher 
is never repeated. In this case, the key is formed by the table where the substitutions are specified. For 
instance: 

 

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Z Y X W V U T S R Q P O N M L K J I H G F E D C B A 

 
Using the standard 26-letter English alphabet, we have 26! different keys. 
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b. Polyalphabetic ciphers 
In polyalphabetic ciphers, the substitution applied to each character varies depending on the position 

that the character occupies within the non-ciphered text. The most typical example of polyalphabetic 
cipher, which owes its name to Blaise Vigénere, dates from the 16th century. 

 
i. Vigénere’s cipher 

Considering again an alphabet with 𝑚𝑚 symbols, the key is built through a sequence of symbols that 
belong to the given alphabet: 

𝑘𝑘 = (𝑘𝑘0,𝑘𝑘1,𝑘𝑘2, . . . ,𝑘𝑘𝑑𝑑−1) 

The cipher function is then as follows: 
𝑐𝑐𝑖𝑖 = 𝑚𝑚𝑖𝑖 + 𝑘𝑘𝑖𝑖𝑚𝑚𝑚𝑚𝑑𝑑 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

Being 𝑚𝑚𝑖𝑖 the number assigned to the i-th symbol of the text that must be ciphered and 𝑐𝑐𝑖𝑖 the i-th 
symbol of the ciphered text.  

To decipher a message ciphered through Vigénere, function 𝑚𝑚𝑖𝑖 = 𝑐𝑐𝑖𝑖 − 𝑘𝑘𝑖𝑖𝑚𝑚𝑚𝑚𝑑𝑑 𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 is used. 
   
Example 
Cipher message ‘SOY YO’ (Spanish for IT’S ME) through Vigénere’s cipher with the standard 26-letter 

English alphabet and key 𝑘𝑘 = {2,10,12} 
In this case 𝑘𝑘0 = 2,𝑘𝑘1 = 10, 𝑘𝑘2 = 12 and 𝑚𝑚 = 3. 
We take the table that assigns numbers to each letter of the alphabet in order to interpret letters as 

numbers and thus be able to apply congruencies. 
  

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 

 

MESSAGE 𝑚𝑚𝑖𝑖 𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚 𝑘𝑘𝑖𝑖𝑚𝑚𝑚𝑚𝑑𝑑 𝑑𝑑 𝑐𝑐𝑖𝑖 = 𝑚𝑚𝑖𝑖 + 𝑘𝑘𝑖𝑖𝑚𝑚𝑚𝑚𝑑𝑑 3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑖𝑖 CIPHERED MESSAGE 

S 18 0 = 0𝑚𝑚𝑚𝑚𝑚𝑚 3 2 20 = 18 + 2𝑚𝑚𝑚𝑚𝑚𝑚 26 20 U 

O 14 1 = 1𝑚𝑚𝑚𝑚𝑚𝑚 3 10 24 = 14 + 10𝑚𝑚𝑚𝑚𝑚𝑚 26 24 Y 

Y 24 2 = 2𝑚𝑚𝑚𝑚𝑚𝑚 3 12 10 = 24 + 12𝑚𝑚𝑚𝑚𝑚𝑚 26 10 K 

Y 24 0 = 3𝑚𝑚𝑚𝑚𝑚𝑚 3 2 0 = 24 + 2𝑚𝑚𝑚𝑚𝑚𝑚 26 0 A 

O 14 1 = 4𝑚𝑚𝑚𝑚𝑚𝑚 3 10 24 = 14 + 10𝑚𝑚𝑚𝑚𝑚𝑚 26 24 Y 

 
The ciphered message takes the form: ‘UYKAY’ 
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To decipher the message, it is enough to use the appropriate decipher function particularized to the 
values of the example: 𝑚𝑚𝑖𝑖 = 𝑐𝑐𝑖𝑖 − 𝑘𝑘𝑖𝑖𝑚𝑚𝑚𝑚𝑑𝑑 3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 

 

CIPHERED MESSAGE 𝑐𝑐𝑖𝑖 𝑖𝑖 𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚 𝑘𝑘𝑖𝑖𝑚𝑚𝑚𝑚𝑑𝑑 𝑑𝑑 𝑚𝑚𝑖𝑖 = 𝑐𝑐𝑖𝑖 − 𝑘𝑘𝑖𝑖𝑚𝑚𝑚𝑚𝑑𝑑 3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑖𝑖 MESSAGE  

U 20 0 = 0𝑚𝑚𝑚𝑚𝑚𝑚 3 2 18 = 20 − 2𝑚𝑚𝑚𝑚𝑚𝑚 26 18 S 

Y 24 1 = 1𝑚𝑚𝑚𝑚𝑚𝑚 3 10 14 = 24− 10𝑚𝑚𝑚𝑚𝑚𝑚 26 14 O 

K 10 2 = 2𝑚𝑚𝑚𝑚𝑚𝑚 3 12 24 = −2 = 10− 12𝑚𝑚𝑚𝑚𝑚𝑚 26 24 Y 

A 0 0 = 3𝑚𝑚𝑚𝑚𝑚𝑚 3 2 24 = 0− 2𝑚𝑚𝑚𝑚𝑚𝑚 26 24 Y 

Y 24 1 = 4𝑚𝑚𝑚𝑚𝑚𝑚 3 10 14 = 24− 10𝑚𝑚𝑚𝑚𝑚𝑚 26 14 O 
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3. Public key cryptography  
Public key algorithms, also called asymmetric algorithms, were introduced by W. Diffie y M. Hellman 

in the 70s decade. They have proven their usefulness to be leveraged in insecure communications networks 
such as the Internet. The main difference between these cryptographic algorithms and symmetric 
algorithms is that there is not a single key to cipher and decipher messages. Rather, the cryptographic key 
is formed by a pair of keys, 𝑘𝑘 = �𝑘𝑘𝑝𝑝, 𝑘𝑘𝑃𝑃�, respectively called private key and public key. 

Public key 𝐾𝐾𝑃𝑃, is the one that is made known and is used to cipher messages. Private key 𝐾𝐾𝑝𝑝 is used 

to decipher the messages and must only be known by the owner of the keys. In order for a user to be 
able to send ciphered information to another user, the sender must know the public key of the receiver. 

Suppose that user 𝐴𝐴 wants to send a message 𝑚𝑚 to user 𝐵𝐵 through an asymmetric algorithm. To use 

an asymmetric algorithm, user 𝐵𝐵 must have a pair of private and public keys �𝑘𝑘𝑝𝑝𝑏𝑏 ,𝑘𝑘𝑃𝑃𝐵𝐵�. 𝐴𝐴 asks 𝐵𝐵 for the 

public key, and codifies the message using that key and the appropriate algorithm. 
 Be it 𝑐𝑐 = 𝑘𝑘𝑃𝑃𝐵𝐵(𝑚𝑚) the obtained cryptogram and consider that 𝐴𝐴 sends the cryptogram to 𝐵𝐵, who can 

decipher the message through the private key: 

𝑚𝑚 = 𝑘𝑘𝑃𝑃𝐵𝐵(𝐶𝐶) = 𝑘𝑘𝑃𝑃𝐵𝐵 �𝑘𝑘𝑝𝑝𝐵𝐵(𝑚𝑚)�. 

 
Observe that through these methods, only a user that has a pair of keys can receive ciphered 

messages. In other words, in order to use asymmetric algorithms, each user must have a pair of keys to 
be able to establish secure communications. Additionally, through these methods, users do not have to 
agree on a common key. 

A potential attacker who wants to decipher a cryptogram (ciphered message) must deal with the 
resolution of complex mathematical problems, on which the security of the methods is based. The main 

𝑚𝑚
𝑘𝑘𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑖𝑖𝑃𝑃𝐵𝐵 �

 Codifies 
�⎯⎯⎯⎯⎯⎯� 𝑐𝑐 = 𝑘𝑘𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑖𝑖𝑃𝑃𝐵𝐵 (𝑚𝑚)  

A 

B 
 

𝑐𝑐
 Decodifies 
�⎯⎯⎯⎯⎯⎯⎯⎯�𝑚𝑚 = 𝑘𝑘𝑝𝑝𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝐵𝐵 (𝐶𝐶) = 𝑘𝑘𝑝𝑝𝐵𝐵�𝑘𝑘𝑃𝑃𝐵𝐵(𝑚𝑚)� 

𝑘𝑘𝑃𝑃𝐵𝐵 

𝐶𝐶 
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issue with asymmetrical algorithms is that they need a considerable key length in order to result safe. For 
instance, symmetrical algorithms consider a 128-bit key as secure, while asymmetrical algorithms 
recommend using 1024-bit keys at least (except for a special kind of algorithm based on elliptic curves). 

 

  
 
In addition, the calculus complexity carried by asymmetric algorithms makes them considerably slower 

than symmetrical cipher algorithms. In practice, public key algorithms are used together with private key 
algorithms. Messages are codified through a symmetric algorithm that uses a key called session key that 

 
 
 

    
     

 
 
 
 

 

𝐾𝐾 

𝑘𝑘𝑠𝑠 

�𝑘𝑘𝑝𝑝𝑏𝑏,𝑘𝑘𝑃𝑃𝐵𝐵� 

𝑘𝑘𝑃𝑃𝐵𝐵 

𝑘𝑘𝑠𝑠 = 𝑘𝑘𝑝𝑝𝐵𝐵(𝐾𝐾)
�=𝑘𝑘𝑝𝑝𝐵𝐵�𝑘𝑘𝑃𝑃

𝐵𝐵(𝑘𝑘𝑠𝑠)��
 

↑ decodifies 
�𝑘𝑘𝑝𝑝𝐵𝐵,𝐾𝐾� 

𝑚𝑚𝐵𝐵
 Codifies 
�⎯⎯⎯⎯⎯⎯�𝑘𝑘𝑠𝑠(𝑚𝑚𝐵𝐵) = 𝑐𝑐 

 

 
 

𝑐𝑐
 Decodifies 
�⎯⎯⎯⎯⎯⎯⎯⎯�𝑘𝑘𝑠𝑠−1(𝑐𝑐)�=𝑘𝑘𝑠𝑠−1�𝑘𝑘𝑠𝑠(𝑚𝑚𝐴𝐴)�� = 𝑚𝑚𝐴𝐴 

𝑘𝑘𝑠𝑠
𝑘𝑘𝑃𝑃𝐵𝐵
�

 Encrypts 
�⎯⎯⎯⎯⎯⎯⎯�𝐾𝐾 = 𝑘𝑘𝑃𝑃𝐵𝐵(𝑘𝑘𝑠𝑠) 

𝑘𝑘𝑠𝑠 

𝑚𝑚𝐴𝐴
 Codifies 
�⎯⎯⎯⎯⎯⎯�𝑐𝑐 = 𝑘𝑘𝑠𝑠(𝑚𝑚𝐴𝐴) 

 
𝑐𝑐

 Decodifies 
�⎯⎯⎯⎯⎯⎯⎯⎯�𝑚𝑚𝐵𝐵 = 𝑘𝑘𝑠𝑠(𝑐𝑐) 

𝑐𝑐 

𝑐𝑐 
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must be different each time a communication between two users is established. The session key is then 
codified through asymmetric cryptography. 

Suppose user 𝐴𝐴 wants to establish secure communications with user 𝐵𝐵. 𝐴𝐴 randomly creates a session 
key 𝑘𝑘𝑠𝑠 for a particular symmetric algorithm. 𝐴𝐴 send 𝐵𝐵 the session key, encrypting it through the public key 
provided by 𝐵𝐵, 𝑘𝑘𝑃𝑃𝐵𝐵, and an asymmetric algorithm. 𝐵𝐵 receives the encrypted session key, 𝐾𝐾 = 𝑘𝑘𝑃𝑃𝐵𝐵(𝑘𝑘𝑠𝑠), and 

deciphers it through the use of the private key: 𝑘𝑘𝑠𝑠 = 𝑘𝑘𝑝𝑝𝐵𝐵(𝐾𝐾) = 𝑘𝑘𝑝𝑝𝐵𝐵�𝑘𝑘𝑃𝑃𝐵𝐵(𝑘𝑘𝑠𝑠)�. This way, the two users have 

now established a common session key and can send messages ciphered through a symmetric algorithm. 
Going forwards, if 𝐴𝐴 wants to send message 𝑚𝑚𝐴𝐴 to 𝐵𝐵, a cryptogram 𝑘𝑘𝑠𝑠(𝑚𝑚𝐴𝐴) will be sent. Analogously, 
messages sent by 𝐵𝐵 to 𝐴𝐴 will be cryptograms 𝑘𝑘𝑠𝑠(𝑚𝑚𝐵𝐵), and in order to read them, 𝐴𝐴 will have to decipher 

them using the session key: 𝑚𝑚𝐵𝐵 = 𝑘𝑘𝑠𝑠−1�𝑘𝑘𝑠𝑠(𝑚𝑚𝐵𝐵)�. 

Among all the public key algorithms, the most widespread is the RSA algorithm, for it is one of the 
easiest to understand and implement. The algorithm is based on the difficulty of factorizing big numbers. 
 

a. The RSA algorithm 
The algorithm owes its name to its inventors: R. Rivest, A. Shamir, and L. Adleman. It was under a 

patent license until September of 2000, and thus its commercial usage was restricted until that date. It is 
considered to be one of the most secure asymmetric algorithms, even when its alleged security has yet to 
be proven or refuted. It has been able to overcome numerous kinds of attacks. 

The RSA key, formed by a pair of keys consisting of a public and a private key, is calculated from a 
number that is obtained as a product of two large prime numbers. Its secureness resides in the difficulty 
to factorize large numbers.  

The public and private keys of RSA are created as follows: 
1. Two large prime numbers, 𝑝𝑝 and 𝑞𝑞, are chosen. 
2. Number 𝑛𝑛 = 𝑝𝑝 ⋅ 𝑞𝑞 is obtained.  
3. 𝛷𝛷(𝑛𝑛) = (𝑝𝑝 − 1)(𝑞𝑞 − 1) is calculated. 

4. A number 𝑒𝑒 is chosen, such that 𝑔𝑔𝑐𝑐𝑚𝑚�𝑒𝑒,𝛷𝛷(𝑛𝑛)� = 1. 

5. The inverse of 𝑒𝑒 module 𝛷𝛷(𝑛𝑛) is calculated: 𝑚𝑚 = 𝑒𝑒−1 𝑚𝑚𝑚𝑚𝑚𝑚 𝛷𝛷(𝑛𝑛) 
6. The public key will be 𝐾𝐾𝑃𝑃𝑃𝑃𝑏𝑏𝑃𝑃𝑖𝑖𝑃𝑃 = (𝑒𝑒, 𝑛𝑛), and the private key will be 𝑘𝑘𝑝𝑝𝑟𝑟𝑖𝑖𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = (𝑚𝑚, 𝑛𝑛) 

To encode or cipher a message 𝑚𝑚 from the public key 𝐾𝐾𝑃𝑃 = (𝑒𝑒, 𝑛𝑛), we use cipher function 𝑐𝑐 = 𝑚𝑚𝑝𝑝 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 
To decipher a cryptogram 𝑐𝑐 we use the private key 𝐾𝐾𝑝𝑝 = (𝑚𝑚, 𝑛𝑛) in the decipher function 𝑚𝑚 = 𝑐𝑐𝑑𝑑 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 
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Notes 
 Observe that the latter equality is verified if the following chain of equalities can be verified: 

𝑐𝑐𝑑𝑑 = (𝑚𝑚𝑝𝑝)𝑑𝑑 = 𝑚𝑚𝑝𝑝⋅𝑑𝑑 =𝑑𝑑=𝑝𝑝−1𝑚𝑚𝑚𝑚𝑑𝑑 Φ(n) 𝑚𝑚𝑝𝑝⋅𝑝𝑝−1𝑚𝑚𝑚𝑚𝑑𝑑 Φ(n) = 𝑚𝑚1+𝑘𝑘⋅Φ(n) = 𝑚𝑚 ⋅ �𝑚𝑚Φ(n)�𝑘𝑘 = 𝑚𝑚Φ(n)=1 𝑚𝑚𝑚𝑚𝑑𝑑 𝑛𝑛
(𝐸𝐸𝑃𝑃𝑃𝑃𝑝𝑝𝑟𝑟′𝑠𝑠 𝑝𝑝ℎ𝑝𝑝𝑚𝑚𝑟𝑟𝑝𝑝𝑚𝑚)

𝑚𝑚 𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 

 
To that extent, the following equalities must be verified: 

1.  𝑒𝑒 · 𝑚𝑚 = 1𝑚𝑚𝑚𝑚𝑚𝑚𝛷𝛷 (𝑛𝑛) 

2. 𝑚𝑚𝑝𝑝⋅𝑑𝑑 = �𝑚𝑚𝛷𝛷(𝑛𝑛)�𝑘𝑘 · 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 
3. 𝑚𝑚𝛷𝛷(𝑛𝑛) = 1𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 

 
This is where our election of 𝑒𝑒 and 𝑚𝑚 and Euler’s theorem come into play: 

1. Taking 𝑒𝑒 with 𝑔𝑔𝑐𝑐𝑚𝑚�𝑒𝑒,𝛷𝛷(𝑛𝑛)� = 1 we can ensure that it is inversible, and then we can take its 

inverse 𝑚𝑚 = 𝑒𝑒−1 𝑚𝑚𝑚𝑚𝑚𝑚 𝛷𝛷 (𝑛𝑛). Then, it is immediate that 𝑒𝑒 · 𝑚𝑚 = 𝑒𝑒 · 𝑒𝑒−1 = 1𝑚𝑚𝑚𝑚𝑚𝑚𝛷𝛷 (𝑛𝑛). 
2. By the definition of congruence, this means that 𝛷𝛷(𝑛𝑛)|𝑝𝑝·𝑑𝑑−1, and that 𝛷𝛷(𝑛𝑛) divides 𝑒𝑒 · 𝑚𝑚 − 1, 

ensuring that ∃𝑘𝑘 ∈ ℤ such that 𝑚𝑚 ⋅ 𝑒𝑒 − 1 = 𝑘𝑘 ⋅ 𝛷𝛷(𝑛𝑛) ⇒ 𝑚𝑚 ⋅ 𝑒𝑒 = 1 + 𝑘𝑘 ⋅ 𝛷𝛷(𝑛𝑛). Hence, we have that 

𝑚𝑚𝑝𝑝⋅𝑑𝑑 = 𝑚𝑚1+𝑘𝑘⋅𝜑𝜑(𝑛𝑛) = 𝑚𝑚𝑘𝑘⋅𝜑𝜑(𝑛𝑛)𝑚𝑚1 = �𝑚𝑚𝜑𝜑(𝑛𝑛)�𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛 
3. Euler’s theorem states that 𝑚𝑚𝑐𝑐𝑚𝑚(𝑚𝑚,𝑛𝑛) = 1 ⇒ 𝑚𝑚𝜑𝜑(𝑛𝑛) = 1𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛. Substituting this equality in the 

prior point we have that 𝑚𝑚𝑝𝑝⋅𝑑𝑑 = �𝑚𝑚𝜑𝜑(𝑛𝑛)�𝑘𝑘𝑚𝑚 = 1𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑛𝑛. 

 
Notes 
 Through the last equality we can affirm that the RSA algorithm works as long as we codify 
messages 𝑚𝑚 such that 𝑔𝑔𝑐𝑐𝑚𝑚(𝑚𝑚, 𝑛𝑛) = 1, that is, coprime with 𝑛𝑛. In any other case, we could not ensure 
the correctness of the deciphered message.  
 This is not problematic. Usually, we want to codify the session key of a symmetric algorithm, which 
is then leveraged to codify the message. These keys are normally 128 bits long, making them numbers 
of the order of 1040, while 𝑝𝑝 and 𝑞𝑞 are numbers longer than 1024 bits, making them of the order of 
10300, making 𝑚𝑚 smaller than 𝑝𝑝 and 𝑞𝑞 and causing 𝑚𝑚 and 𝑛𝑛 to be coprime numbers (𝑚𝑚 ≪ 𝑝𝑝,𝑞𝑞 < 𝑛𝑛). 
 In order to be able to decipher a cryptogram, an attacker must know the private key 𝑘𝑘𝑝𝑝 = (𝑚𝑚,𝑛𝑛). 

To that extent, the attacker must know the public key 𝑘𝑘𝑃𝑃 = (𝑒𝑒,𝑛𝑛) and the value of 𝛷𝛷(𝑛𝑛). 
 The secureness of the algorithm is based upon the difficulty to calculate 𝛷𝛷(𝑛𝑛) without knowing 
the factorization of 𝑛𝑛, and thus, in the difficulty of factorizing 𝑛𝑛 when it is a large number. 
 This is the reason why 𝑝𝑝 and 𝑞𝑞 must be sufficiently large and unknown, and why 𝛷𝛷(𝑛𝑛) must never 
be made known. In any of those scenarios, the private key might be uncovered, and the messages 
would be deciphered. 
 If we can factorize 𝑛𝑛 = 𝑝𝑝 · 𝑞𝑞 and then calculate 𝛷𝛷(𝑛𝑛) = (𝑝𝑝 − 1)(𝑞𝑞 − 1), calculating the private key 
would be as easy as calculating 𝑚𝑚 = 𝑒𝑒−1 𝑚𝑚𝑚𝑚𝑚𝑚 𝛷𝛷 (𝑛𝑛) through Bézout’s identity. 
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Example 1 
Two careless users take as public key 𝐾𝐾𝑃𝑃 = (37,221) and send each other cryptogram 159 ciphered 

through RSA. What is the message they sent each other? 
 
In the example, the users have been careless, since they have used as key a number that can be 

easily factorized: 221 = 13 ⋅ 17. Observe that we do not need to use any factorization algorithm, since it 

is enough to try to divide the number with the prime numbers below its square root (√221 ≃ 14,86). Now, 
it is easy to calculate 𝛷𝛷(221) = (13− 1)(17 − 1) = 12 · 16 = 192 from the factorization in prime numbers. 

Observe that 𝑚𝑚𝑐𝑐𝑚𝑚�𝑒𝑒,𝛷𝛷(𝑛𝑛)� = 𝑚𝑚𝑐𝑐𝑚𝑚(37,192) = 1, to verify this it is enough to apply the Euclidean algorithm: 

192 = 5 · 37 + 7 

37 = 5 · 7 + 2 

7 = 3 · 2 + 1 

Using these equalities, we can calculate the following Bézout’s identity (expressing 𝑚𝑚𝑐𝑐𝑚𝑚(37,192) = 1 
as a linear combination of 37 and 192) 

192 = 5 · 37 + 7
37 = 5 · 7 + 2
7 = 3 · 2 + 1

� ⇒
7 = 192− 5 · 37

2 = 37− 5 · 7
1 = 7 − 3 · 2

� ⇒ 

1 = 7 − 3 · 𝟐𝟐=7 − 3 · (𝟑𝟑𝟑𝟑 − 𝟓𝟓 · 𝟑𝟑) 
= −3 · 37 + 16 · 𝟑𝟑 = −3 · 37 + 16 · (𝟏𝟏𝟏𝟏𝟐𝟐 − 𝟓𝟓 · 𝟑𝟑𝟑𝟑) 
= 16 · 192 − 83 · 37 ⇒ 𝟏𝟏 = 𝟏𝟏𝟏𝟏 · 𝟏𝟏𝟏𝟏𝟐𝟐 + (−𝟖𝟖𝟑𝟑) · 𝟑𝟑𝟑𝟑 

Taking congruencies module 192 we have that 1 = (−83) · 37𝑚𝑚𝑚𝑚𝑚𝑚 192 ⇒ 37−1 = −83 = 109𝑚𝑚𝑚𝑚𝑚𝑚 192 
Hence, we have the value of 𝑚𝑚 = 109𝑚𝑚𝑚𝑚𝑚𝑚 192, the part of the private key that we needed to decipher 

the message. Now, deciphering the message is reduced to calculating 159109 𝑚𝑚𝑚𝑚𝑚𝑚 221 = 146𝑚𝑚𝑚𝑚𝑚𝑚 221. 

Hence, the message that the users sent each other is 146. 
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Example 2 
Users A and B want to start a secure session to share a huge amount of data. To that extent, they 

have designed the following hybrid cipher system: B will send A the session key (𝑎𝑎,𝑏𝑏) to cipher data 
through affine substitution with the 27-symbol Spanish alphabet (including the ñ character). To send the 
session key, they will use the RSA algorithm and a public key provided by A.  

1. A is a careless user and has used public key 𝐾𝐾𝑃𝑃 = (19,161). Find his private key. 
2. B has sent the session key to user A. As an attacker, you have intercepted the ciphered 

message, finding out that the first value is 23 and the second value is 48. Decipher the key. 
3. Now that you know the session key, decipher the message that A sent B confirming the 

reception of the key: MXUMHWXÑRPH. Note: the second message that A sent B was RAMONES 
Solution 
1. Factorization of 81 
--> fermat(7*23)  
(n+1)/2 = 81.   
!x  e=x^*x-n  z=2x+1  y=sqrt(e)  ! 
     13.    8.    27.    2.8284271   
     14.    35.    29.    5.9160798   
     15.    64.    31.    8.   
The number is not a prime number, and there is a factorization through Fermat’s method. The values of 
the two factors are a=7 and b=23   
 
Calculation of the private key: 

  
𝑛𝑛 = 161 = 7 · 23
𝛷𝛷(𝑛𝑛) = 6 · 22 = 132
19−1 = 7𝑚𝑚𝑚𝑚𝑚𝑚 1 32

� → 𝑘𝑘𝑝𝑝 = (7,161) 

 
-->inversomod(19,132) 
The mcd of 19 and 132 is 1  
Bézout’s identity takes the form (19)*(7)+(132) *(-1)=1  
Then, the inverse of 19 mod 132 is 7    
 
2. Calculation of the session key through RSA deciphering: 

237 = 23𝑚𝑚𝑚𝑚𝑚𝑚 161 

487 = 13𝑚𝑚𝑚𝑚𝑚𝑚 161 
Then, the key is (𝑎𝑎,𝑏𝑏) = (23,13) 
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3. Deciphering the message through affine substitution 
 

A B C D E F G H I J K L M N Ñ O P Q R S T U V W X Y Z  
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  

 
CIPHER 𝑐𝑐𝑖𝑖 = 𝑎𝑎𝑚𝑚𝑖𝑖 + 𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 27,(𝑎𝑎, 𝑏𝑏) = (23,13),  

27 = 23 · 1 + 4
23 = 4 · 5 + 3
4 = 3 · 1 + 1

� �
1 = 4− 3 = 4− (23 − 4 · 5) =

= 6 · 4− 23 = 6(27 − 23) − 23 =
= 27 · 6 + (−7) · 23 = (−7) · 23𝑚𝑚𝑚𝑚𝑚𝑚 27 → 23−1 = −7 = 20𝑚𝑚𝑚𝑚𝑚𝑚 27

 

DECIPHER 𝑚𝑚𝑖𝑖 = 𝑎𝑎−1(𝑐𝑐𝑖𝑖 − 𝑏𝑏) = 20(𝑐𝑐𝑖𝑖 − 13) =−13⋅20=10 𝑚𝑚𝑚𝑚𝑑𝑑 27 20𝑐𝑐𝑖𝑖 + 10 𝑚𝑚𝑚𝑚𝑚𝑚 27 
 

CIPHER 𝑐𝑐𝑖𝑖 𝑚𝑚𝑖𝑖 = 20𝑐𝑐𝑖𝑖 + 10 𝑚𝑚𝑚𝑚𝑚𝑚 27 𝑚𝑚𝑖𝑖 MESSAGE 

M 12 20 · 12 + 10 = 250 = 7𝑚𝑚𝑚𝑚𝑚𝑚 27 7 H 

X 24 20(24− 13) = 20 · 11 = 4𝑚𝑚𝑚𝑚𝑚𝑚 27 4 E 
U 21 20(21− 13) = 160 = 25𝑚𝑚𝑚𝑚𝑚𝑚27 25 Y 

M 12 20 · 12 + 10 = 250 = 7𝑚𝑚𝑚𝑚𝑚𝑚 27 7 H 

H 7 20 · 7 + 10 = 150 = 15𝑚𝑚𝑚𝑚𝑚𝑚 27 15 O 

W 23 20(23− 13) = 200 = 11𝑚𝑚𝑚𝑚𝑚𝑚27 11 L 

X 24 20(24− 13) = 20 · 11 = 4𝑚𝑚𝑚𝑚𝑚𝑚 27 4 E 

Ñ 14 20(14− 13) = 20𝑚𝑚𝑚𝑚𝑚𝑚 27 20 T 

R 18 20(18− 13) = 100 = 19𝑚𝑚𝑚𝑚𝑚𝑚27 19 S 

P 16 20(16− 13) = 60 = 6𝑚𝑚𝑚𝑚𝑚𝑚27 6 G 

H 7 20 · 7 + 10 = 150 = 15𝑚𝑚𝑚𝑚𝑚𝑚 27 15 O 
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EXERCISES 
Exercise 1 Cipher via affine substitution, with key (2,5) and the Spanish 27-letter alphabet (including 
ñ, and without blank spaces) the message AGENTE SECRETO (Spanish for SECRET AGENT). 
 
Exercise 2 Decipher the message HW NEOYQ JSYR, which has been ciphered via affine substitution 
with key (5,4) and the standard 26-letter English alphabet. 
 
Exercise 3 Decipher the message PURTFJUIE LNPNPKNÑFLF, ciphered through affine substitution 
with key (2,5) and the Spanish 27-letter alphabet. 
 
Exercise 4 A hacker intercepts the following message: OSWGMSSONCIO. Through frequency 
analysis, the hacker has managed to deduce that letters G and N can be deciphered by U and P, 
respectively. Knowing that the alphabet in use is the standard 26-letter English alphabet, and that affine 
substitution is used, help the hacker decipher the message. 

 
Exercise 5 Cipher the phrase ESTOY CIFRANDO CON VIGÉNERE (Spanish for I’M CIPHERING 
THROUGH VIGÉNERE) through Vigénere’s cipher using the standard 26-letter English alphabet and the 
following key: 𝑘𝑘 = {7,11,20,24} 
 
Exercise 6 Given prime numbers 𝑝𝑝 = 163, 𝑞𝑞 = 271; and public key 𝐾𝐾𝑃𝑃 = (𝑒𝑒, 𝑛𝑛) = (25277,163 · 271), 
decipher the following messages: 

a) 8767 b) 18582 c) 39760 
 
Exercise 7 (February 2007) Users A and B want to start a secure session to share a large amount of 
data. To that extent, they are using the following hybrid cipher system: B will send A session key (a, b) to 
cipher data through a symmetrical algorithm. To send this session key, they will use RSA and the public 
key of A. When both know the session key, they will cipher and decipher their messages through affine 
substitution and the Spanish 27-letter alphabet. 

a) A is a somewhat careless user and has used public key 𝐾𝐾𝑃𝑃 = (7,33). Find A’s private key by using 
Fermat’s method in the factorization of 𝑛𝑛. 
b) B has sent the session key to A, but as an attacker, you have intercepted the cryptogram, finding 
that the first value is 29 and that the second value is 14. Decipher the session key and the message 
that A sent B to confirm the reception of the key: TEPFON. 
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Exercise 8 Users A and B want to start a secure session to share a large amount of data. To that 
extent, they are using the following hybrid cipher system: B will send A session key (a, b, c) to cipher data 
through a symmetrical algorithm. To send this session key, they will use RSA and the public key of A. 
When both know the session key, they will cipher and decipher messages through Vigénere with the 
Spanish 27-letter alphabet.  

a) A is a somewhat careless user and has used public key 𝐾𝐾𝑃𝑃 = (19,161). Find A’s private key by 
using Fermat’s method in the factorization of 𝑛𝑛. 

b) B has sent the session key to A, but as an attacker, you have intercepted the cryptogram, 
discovering that the first value is 52, the second value is 1, and the third value is 72. Decipher the 
session key and the message that A sent B to confirm the reception of the key: ÑFVVHQ 
 

Exercise 9 Users A and B want to start a secure session to share a large amount of data. To that 
extent, they are using the following hybrid cipher system: B will send A session key (a, b) to cipher data 
through affine substitution and the standard 26-letter English alphabet. To send this session key, they will 
use RSA and the public key of A. 

a)  A is a somewhat careless user and has used public key 𝐾𝐾𝑃𝑃 = (43,77). Find A’s private key by using 
Fermat’s method in the factorization of 𝑛𝑛. 
b) B has sent the session key to A, but as an attacker, you have intercepted the cryptogram, 
discovering that the first value is 64 and that the second value is 38. Decipher the session key and 
the message that A sent B to confirm the reception of the key: LQIFZ 

Note: the second message that A sent to B was CHRISTMAS 
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