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1. Introduction 
1.1. Thought 
The term thought is commonly used to define the ideas or opinions produced by the mind. The 

process of thinking always meets a specific motivation, which can be caused by the natural, social, or 
cultural environment, or by the thinking subject himself.  

  There are many types or classifications of the thought process: analytic reasoning, creativity, 
systematic thinking… This subject is focused on the study of the scientific thinking; specifically, the logical 
deductive thinking.  

Scientific thinking refers to a systematic process which is based on a system of concepts, 
judgments, and reasonings about the objects and laws of humans and of the external world. Logical 
thinking is characterized by operating through concepts. This type of thinking always follows a specific 
direction, whose objective is to search a conclusion or solution for a problem. The direction is not always 
a straight line. In fact, it can be zigzagging with advances, stops, detours, and even reversals. 

Deductive thinking moves from the general to the particular. This type of thinking focuses on 
reaching a conclusion from one or several premises. In contrast, inductive thinking focuses on the 
contrary process moving from the particular to the general. Given an assumption, if something is true in 
some cases, it will be true in other similar cases although we cannot observe it.  

The thought and the language are strongly related. The language is necessary to communicate the 
concepts, the judgements, and the reasonings of the thought. The thought is preserved through the 
language. The language empowers the thought to become more tangible. 
 

1.2. Mathematical logic 
There is not an easy way to provide a precise definition of logic including all its parts and only its parts. 

We propose to define logic by means of the following keys ideas: 
1. The theory of the definitions is part of logic and consist of precise definitions of specific 

concepts. 
Descriptive definitions are not very useful for the experts, but they are useful for everyday life. 
Precise definitions can be useful for experts, but they are unintelligible and useless for laymen in 
certain subjects. (i.e., mathematical definitions) 

2. Logic refers to the knowledge of the truths for a specific reality.  
Logic does not deal with the elaboration of thought from all the information that our senses can 
transmit. All this information cannot be managed in clear and precise ways as the logic demands.  

3. Logic deals with the part of the knowledge which is expressible in written language. 
Logic does also not deal with knowledge that is expressible in natural language which is usually not 
very precise and ambiguous. Logic only deals with the part of the knowledge expressible in a language 
that allows us to communicate scientific knowledge. Therefore, to satisfy the demands of precision, 
we must use a largely artificial language, with a precise grammar, without ambiguities or exceptions. 
The type of “sentences” to be used will be able to be evaluated as true or false, without ambiguities. 
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4. Logic deals with Truths.  
There are truths of fact, which are clearly verifiable from observation, and truths of reason, which are 
obtained by reasoning from the truths of fact. 

5. Logic deals with the study and analysis of the structure of the precise or valid 
reasonings and the possible laws governing them: LOGICAL LAWS OR DEDUCTIVE 
RULES. 

The reasoning process can be understood as the process of moving from some truths to others through 
a chain of statements, being some of them obtained from the others. 
 
Therefore, logic is a mathematical model of the deductive thinking (at least in its principles). It 

researches about the relation between the premises and the consequences of valid and correct arguments. 
Example  
All humans are mortal. 
All Cantabrian people are humans. 
Therefore, all Cantabrian people are mortal. 

 
Comments 
 Logic is fundamental in the process of modelling different situations for their subsequent analysis. 
Given an object or a situation, the design of a model consists of selecting some of the main 
characteristics from the original object or situation and building a similar object or situation that is 
more manageable. The success of a model depends on the selection of relevant or significant 
characteristics. 
 To define an object, we need a precise language (LOGIC LANGUAGE) and some starting truth that 
is extracted from the main characteristics of the real objects (AXIOMS). 
 Furthermore, we must use the axiomatic deductive method (DEDUCTIVE RULES) to prove other 
different truths that provide more knowledge (e.g., mathematical results). 

2. b
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Propositional Logic 
2.1. Propositions 
Definition 
A proposition is a sentence that expresses whether an idea is true or false in an exclusive way. Each 

sentence is associated to a truth value: T if the sentence is true or F if the sentence is false. Propositions, 
like sets, are denoted by capital letters.  

Propositions – potential premises and conclusions and the bearers of truth and falsity 
– are declarative sentences(i.e. sentences like ‘Jack kicks the ball’ as opposed to 
interrogatives like ‘Does Jack kick the ball?’ or imperatives like ‘Jack, kick the ball!’).[1] 

The truth value which is associated to a proposition is called truth assignment. 
Examples 
1. A=’Two is an even number’. It is a proposition, and its truth assignment is T. 
2. B=’A car is red’. It is not a proposition because “a car” is unspecific. 
3. C=’This sentence is false’. It is not a proposition. If it was true the sentence would be false, and 

if it was false the sentence would be true. 

2.2. Logical Connective 
Logical connective 

Type Name Notation Read 

Unary Negation ¬ not 

Binary 

Conjunction ∧ and 

Disjunction ∨ or 

Conditional → if…then 

Biconditional ↔ if and only if 

 
Logical connectives are the operators or functions that we can apply on one or several propositions 

to obtain other propositions. They can be unitary when one proposition is used to obtain another 
proposition, or binary when two propositions are used to obtain a new proposition. 

A truth table shows all the possible truth assignments for an expression composed of propositions 
and logical connectives that are collected through a systematic process. To build this table, we have to 
consider all the truth assignments, and then, we have to apply the own rules of the operators used to 
build it. If we consider the following set of basic propositions {𝐴𝐴,𝐵𝐵}, there will be a total of  22 = 4 possible 
truth assignments: 

𝐴𝐴 𝐵𝐵 
T T 
T F 
F T 
F F 
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In general, in a set of n basic propositions, there is a total of 2𝑛𝑛 possible truth assignments. 
 

Definitions 
Given two propositions 𝐴𝐴 and 𝐵𝐵: 
The negation of the proposition 𝐴𝐴 is ¬𝐴𝐴, which takes truth values opposite to those taken by 

proposition 𝐴𝐴. If 𝐴𝐴 is true, ¬𝐴𝐴  will be false, and if 𝐴𝐴 is false, ¬𝐴𝐴 will be true. The truth table of this 
operator is described as follows: 

 

𝐴𝐴 ¬𝐴𝐴 
T F 
F T 

 
The conjunction of 𝐴𝐴 and 𝐵𝐵, 𝐴𝐴 ∧ 𝐵𝐵, is a proposition whose truth value is only true when 𝐴𝐴 and 𝐵𝐵 are 

true. In other cases, its truth value is false. The truth table of this operator is described as follows: 
 

𝐴𝐴 𝐵𝐵 𝐴𝐴 ∧ 𝐵𝐵 
T T T 
T F F 
F T F 
F F F 

 
The disjunction of 𝐴𝐴 and 𝐵𝐵,𝐴𝐴 ∨ 𝐵𝐵, is a proposition whose truth value is true when some of the 

propositions 𝐴𝐴 or 𝐵𝐵 are true. In another case, its truth value is false. The truth table of this operator is 
described as follows: 

 

𝐴𝐴 𝐵𝐵 𝐴𝐴 ∨ 𝐵𝐵 
T T T 
T F T 
F T T 
F F F 
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The conditional of 𝐴𝐴 and 𝐵𝐵, 𝐴𝐴 → 𝐵𝐵, is a proposition whose truth value is true provided that 𝐴𝐴 is false 
or when 𝐴𝐴 and 𝐵𝐵 are true. In another case, its truth value is false. The truth table of this operator is 
described as follows: 

 

𝐴𝐴 𝐵𝐵 𝐴𝐴 → 𝐵𝐵 
T T T 
T F F 
F T T 
F F T 

 
The biconditional of 𝐴𝐴 y 𝐵𝐵,𝐴𝐴 ↔ 𝐵𝐵, is a proposition whose truth value is true provided that 𝐴𝐴 and 𝐵𝐵 

have the same truth value; both propositions are true or both propositions are false. In another case, its 
truth value is false. The truth table of this operator is described as follows: 

 

𝐴𝐴 𝐵𝐵 𝐴𝐴 ↔ 𝐵𝐵 
T T T 
T F F 
F T F 
F F T 

 
The following table shows the truth tables for all these operators:  
 

𝐴𝐴 𝐵𝐵 𝐴𝐴 ∧ 𝐵𝐵 𝐴𝐴 ∨ 𝐵𝐵 𝐴𝐴 → 𝐵𝐵 𝐴𝐴 ↔ 𝐵𝐵 
T T T T T T 
T F F T F F 
F T F T T F 
F F F F T T 
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2.3. Propositional Logic Language: Well-formed formulas 
Elements of the propositional language: Well-formed formulas. 

Definitions 
A well-formed formula (WFF) is a proposition that is built from simple propositions 𝐴𝐴,𝐵𝐵, … and 

logical connectives used a finite number of times (¬𝐴𝐴), (𝐴𝐴 ∧ 𝐵𝐵), (𝐴𝐴 ∨ 𝐵𝐵), (𝐴𝐴 → 𝐵𝐵) o (𝐴𝐴 ↔ 𝐵𝐵). 
The elements of the formal language for the propositional logic are: 

1. A numerable set of statement symbols that represent the propositions. In our case, they 
are denoted by capital letters. 

2. A finite set of logical symbols that are the logical connectives (¬,∧,∨,→y ↔) and the 
parentheses to indicate the priority of the logical connectives.  

3. Rules to build new expressions, that are well-formed formulas (WFFs), using the previous 
symbols:  
a. Every statement symbol is a WFF. 
b. If 𝐴𝐴 and 𝐵𝐵 are WFF, then (¬𝐴𝐴), (𝐴𝐴 ∧ 𝐵𝐵), (𝐴𝐴 ∨ 𝐵𝐵), (𝐴𝐴 → 𝐵𝐵), and (𝐴𝐴 ↔ 𝐵𝐵) are also WFFs. 
c. A sequence of symbols is not a formula unless it verifies a. or b. 

Comments 
 For example, considering the previous rules, we can deduce that the expressions with more left 
parentheses than right parentheses are not formulas. 
 The parentheses, as they do in the mathematical expressions, indicate the priority of the operators. 
In other words, the operator within parentheses must be applied before the rest of the operators.  
The following rules specify the use of the parentheses in WFF.  

1. The expression ¬𝐴𝐴 represents (¬𝐴𝐴) . 
2. The expression 𝐴𝐴 ○ 𝐵𝐵 represents (𝐴𝐴 ○ 𝐵𝐵) where ○ represents ∧, ∨, → , or ↔. 
3. The expression 𝐴𝐴 ○ 𝐵𝐵 ○ 𝐶𝐶 represents 𝐴𝐴 ○ (𝐵𝐵 ○ 𝐶𝐶) where ○ represnts ∧, ∨, →, or ↔. 
4. The expression  𝐴𝐴 ○ 𝐵𝐵 → 𝐶𝐶 represents (𝐴𝐴 ○ 𝐵𝐵) → 𝐶𝐶 where ○ represents ∧ or ∨. 
5. The expression 𝐴𝐴 → 𝐵𝐵 ○ 𝐶𝐶 represents 𝐴𝐴 → (𝐵𝐵 ○ 𝐶𝐶) where ○ represents ∧ or ∨. 

We can also replace → for ↔ in 4. and 5., to obtain similar rules for the biconditional operator.  
Example 

�(𝐴𝐴 → 𝐵𝐵) ∨ �(𝐴𝐴 ∧ 𝐵𝐵) → 𝐶𝐶�� is a WFF. 

Exercise 
Build a truth table for the previous WFF.  
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2.4.  Tautologies and Contradictions 
Definitions 
A tautology is a WFF that always is true. It is denoted by T, and in its truth table, it always has a 

value of T for any value of the simple propositions that compose it.  
 
A contradiction is a WFF that always is false. It is denoted by C, and in its truth table, it always has 

a value of F for any value of the simple propositions that compose it.  
 
Examples 
The WFF 𝐴𝐴 ∨¬𝐴𝐴 is a tautology. Its truth table is the following: 
 

𝐴𝐴 ¬𝐴𝐴 𝐴𝐴 ∨ ¬𝐴𝐴 
T F T 
T F T 
F T T 
F T T 

 
The WFF 𝐴𝐴 ∧¬𝐴𝐴 is a contradiction. Its truth table is the following: 
 

𝐴𝐴 ¬𝐴𝐴 𝐴𝐴 ∧ ¬𝐴𝐴 
T F F 
T F F 
F T F 
F T F 

 

2.4.1. Methods to verify tautologies 
To determine whether a WFF 𝐴𝐴 is  a tautology, we can use different methods.  
The first method is the simplest. It consists of building the truth table of the WFF. If true is the only 

possible value no matter the values of the propositions that compose the WFF, then 𝐴𝐴 is a tautology. 

The second method consists in supposing that the value of 𝐴𝐴 is false for a certain truth value of the 
propositions that compose the WFF. If a contradiction is deducted from this hypothesis, the tautology will 
be true. If there is no contradiction, we will have found a truth value where 𝐴𝐴 is false so the WFF 𝐴𝐴 is not 
a tautology. 
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Comments 
The second method is called reductio ad absurdum. The initial hypothesis considers the opposite case 

of what we want to prove. Reaching a contradiction indicates that our hypothesis is false, and hence what 
we want to prove is true. 

If there is no contradiction, we will have reached a counterexample so we can conclude that what we 
want to prove is false. 

 
Examples 

1. The WFF (𝐴𝐴 ∨ ¬𝐵𝐵) → (𝐵𝐵 → 𝐴𝐴) is a tautology: 
The truth value of this WFF is always true in its truth table: 
 

𝐴𝐴 𝐵𝐵 ¬𝐵𝐵 𝐴𝐴 ∨ ¬𝐵𝐵 𝐵𝐵 → 𝐴𝐴 (𝐴𝐴 ∨ ¬𝐵𝐵) → (𝐵𝐵 → 𝐴𝐴) 
T T F T T T 
T F T T T T 
F T F F F T 
F F T T T T 

 
Supposing that the WFF has a value of false (F) for some of the truth values, we reach a contradiction: 

( ) ( )

( )
1

2

8

3

4 5

6 7

F

A

FT

B B A
F

F T

T F

F

F F

∨¬ → →

→⇔ →
 

The WFF 𝐴𝐴 ∨¬𝐵𝐵 in the previous expression is simultaneously true (𝑉𝑉2) and false (𝐹𝐹8). It is a 
contradiction, so we can state that (𝐴𝐴 ∨ ¬𝐵𝐵) → (𝐵𝐵 → 𝐴𝐴) is a tautology. 

 
2. The WFF (𝐴𝐴 → 𝐵𝐵) → (𝐴𝐴 ∨ ¬𝐵𝐵)  is not a tautology: 

The truth value of this WFF is not true in its truth table. 
 

𝐴𝐴 𝐵𝐵 ¬𝐵𝐵 𝐴𝐴 → 𝐵𝐵 𝐴𝐴 ∨ ¬𝐵𝐵 (𝐴𝐴 → 𝐵𝐵) → (𝐴𝐴 ∨ ¬𝐵𝐵) 
T T F T T T 
T F T F T T 
F T F T F F 
F F T T T T 
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Supposing that the WFF has a value of false (F) for some of the truth values, we do not reach a 
contradiction. In fact, we reach the truth value of the last row: 

( ) ( )

( )
1

2 3

4 5

8

6 7

F

A B A B
F

T F T F

F
T

T
F

F

→ → ∨¬

→⇔ →
 

 
We do not reach a contradiction in the previous expression. In fact, the obtained truth values of the 

propositions (A false and B true) cause that the WFF has a value of F, (𝐹𝐹1). 
 

2.5.  Logical equivalences and implications 
Definitions 
Two WFF 𝐴𝐴 and 𝐵𝐵 are logically equivalent when 𝐴𝐴 ↔ 𝐵𝐵 is a tautology. It is denoted by 𝐴𝐴 ⇔ 𝐵𝐵. 
Two WFF 𝐴𝐴 logically implies 𝐵𝐵 when WFF 𝐴𝐴 → 𝐵𝐵 is a tautology. It is denoted by 𝐴𝐴 ⇒ 𝐵𝐵. 
 
Comments 
 If 𝐴𝐴 ⇔ 𝐵𝐵, the truth tables of 𝐴𝐴 and 𝐵𝐵 are equal, and vice versa. 
 Therefore, to prove that two WFFs are logically equivalent, we have two options. The first one 
requires to use the previous methods to prove that the WFF 𝐴𝐴 ↔ 𝐵𝐵 is a tautology. The second one 
requires to prove that the truth tables of 𝐴𝐴 and 𝐵𝐵 are equal. 
 To prove that 𝐴𝐴 ⇒ 𝐵𝐵, we have to verify that 𝐴𝐴 → 𝐵𝐵 is a tautology. 
 
Exercises 

1. Prove that 𝐴𝐴 ∧ (𝐴𝐴 → 𝐵𝐵) ⇔𝐵𝐵. 
2. Prove that the logical equivalences of the following table are tautologies. 
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Table of some logical equivalences 
Given the arbitrary WFFs 𝑃𝑃,𝑄𝑄 and 𝑅𝑅, where 𝑇𝑇 and 𝐶𝐶 are a tautology and a contradiction respectively: 
 

Name Tautology 

Double negation ¬(¬𝑃𝑃) ⇔ 𝑃𝑃 

Commutative Laws 
𝑃𝑃 ∧ 𝑄𝑄 ⇔ 𝑄𝑄 ∧ 𝑃𝑃 
𝑃𝑃 ∨ 𝑄𝑄 ⇔ 𝑄𝑄 ∨ 𝑃𝑃 

Associative Laws 
𝑃𝑃 ∧ (𝑄𝑄 ∧ 𝑅𝑅) ⇔ (𝑃𝑃 ∧ 𝑄𝑄) ∧ 𝑅𝑅 
𝑃𝑃 ∨ (𝑄𝑄 ∨ 𝑅𝑅) ⇔ (𝑃𝑃 ∨ 𝑄𝑄) ∨ 𝑅𝑅 

Distributive Laws 
𝑃𝑃 ∧ (𝑄𝑄 ∨ 𝑅𝑅) ⇔ (𝑃𝑃 ∧ 𝑄𝑄) ∨ (𝑃𝑃 ∧ 𝑅𝑅) 
𝑃𝑃 ∨ (𝑄𝑄 ∧ 𝑅𝑅) ⇔ (𝑃𝑃 ∨ 𝑄𝑄) ∧ (𝑃𝑃 ∨ 𝑅𝑅) 

De Morgan’s Laws 
¬(𝑃𝑃 ∧ 𝑄𝑄) ⇔ ¬𝑃𝑃 ∨ ¬𝑄𝑄 
¬(𝑃𝑃 ∨ 𝑄𝑄) ⇔ ¬𝑃𝑃 ∧ ¬𝑄𝑄 

Contraposition 𝑃𝑃 → 𝑄𝑄 ⇔ ¬𝑄𝑄 → ¬𝑃𝑃 

Identity and domination laws  
𝑃𝑃 ∨ 𝐶𝐶 ⇔ 𝑃𝑃 𝑃𝑃 ∨ 𝑇𝑇 ⇔ 𝑇𝑇 

𝑃𝑃 ∧ 𝐶𝐶 ⇔ 𝐶𝐶 𝑃𝑃 ∧ 𝑇𝑇 ⇔ 𝑃𝑃 

Idempotent Laws 
(𝑃𝑃 ∧ 𝑃𝑃) ⇔ 𝑃𝑃 
(𝑃𝑃 ∨ 𝑃𝑃) ⇔ 𝑃𝑃 

Logical Equivalence involving conjunction and implication 𝑃𝑃 ∧ 𝑄𝑄 ⇔ ¬(𝑃𝑃 → ¬𝑄𝑄) 

Logical Equivalence involving disjunction and implication 𝑃𝑃 ∨ 𝑄𝑄 ⇔ ¬𝑃𝑃 → 𝑄𝑄 
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2.6.  Propositional calculus 
2.6.1. Formal logical systems 

Definitions 
A formal logical system is composed of specific WFFs that are considered axioms (they are 

generally tautologies) and of inference rules that allow us to deduce new WFFs from the others.  
A formal proof or derivation is composed of a sequence of WFFs where each WFF is an axiom, an 

assumption, or is the result of applying an inference rule on an WFFs in the sequence. When there is no 
assumption in a formal proof, the last element of a formal proof is called theorem and the formal proof 
is the proof of the theorem. 

A formal logical system is sound when all theorem in this system is a tautology.  
A formal logical system is complete when we can prove that all its tautologies are theorems using 

its axioms and its inference rules. 
 

Examples 
1. The following formal logical system was developed by A. N. Whitehead and B. Russel: 

Axioms: ∀𝑃𝑃,𝑄𝑄,𝑅𝑅 WFFs verify: 
1. (𝑷𝑷 ∨ 𝑷𝑷) → 𝑷𝑷 
2. 𝑸𝑸 → (𝑷𝑷 ∨ 𝑸𝑸) 
3. (𝑷𝑷 ∨ 𝑸𝑸) → (𝑸𝑸 ∨ 𝑷𝑷) 

4. (𝑷𝑷 → 𝑸𝑸) → �(𝑹𝑹 ∨ 𝑷𝑷) → (𝑹𝑹 ∨𝑸𝑸)� 

All of them are also tautologies.  
 
Inference rules 
1. Rules of replacement: The result of replacing any element of theorem with a WFF is a 

theorem.  
For example, replacing 𝑃𝑃 with 𝐴𝐴 ∧ 𝐵𝐵 in the axiom 1. (𝑷𝑷 ∨ 𝑷𝑷) → 𝑷𝑷, we obtain that 
�(𝑨𝑨 ∧ 𝑩𝑩) ∨ (𝑨𝑨 ∧ 𝑩𝑩)� → (𝑨𝑨 ∧ 𝑩𝑩) is another theorem of this formal logical system.  
2. Modus ponens: 𝑃𝑃 ∧ (𝑃𝑃 → 𝑄𝑄) → 𝑄𝑄. If 𝑃𝑃 and 𝑃𝑃 → 𝑄𝑄 are theorems, then 𝑄𝑄 is a theorem.  
 

2. This is another formal logical system. 
Axioms: ∀𝑃𝑃,𝑄𝑄,𝑅𝑅 WFFs verify: 
1. 𝑷𝑷 → (𝑸𝑸 → 𝑷𝑷) 

2. �𝑷𝑷 → (𝑸𝑸 → 𝑹𝑹)� → �(𝑷𝑷 → 𝑸𝑸) → (𝑷𝑷 → 𝑹𝑹)� 

3. (¬𝑸𝑸 → ¬𝑷𝑷) → (𝑷𝑷 → 𝑸𝑸) 
All of them are also tautologies.  
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Inference rules: the same as in the previous example. 
1. Rules of replacement: The result of replacing any element of theorem with a WFF is a 

theorem.  
For example, replacing 𝑃𝑃 with 𝐴𝐴 ∧ 𝐵𝐵 in the axiom 1. (𝑷𝑷 ∨ 𝑷𝑷) → 𝑷𝑷, we obtain that 
�(𝑨𝑨 ∧ 𝑩𝑩) ∨ (𝑨𝑨 ∧ 𝑩𝑩)� → (𝑨𝑨 ∧ 𝑩𝑩) is another theorem of this formal logical system.  
2. Modus ponens: 𝑃𝑃 ∧ (𝑃𝑃 → 𝑄𝑄) → 𝑄𝑄. If 𝑃𝑃 and 𝑃𝑃 → 𝑄𝑄 are theorems, then 𝑄𝑄 is a theorem. 
 

Comments 
 The two logical systems of the previous examples are correct and complete. That means that all 
their tautologies are theorems, and all their theorems are tautologies. Therefore, we can use the 
tautologies that are described by the table of logical equivalences in any formal proof. 
 The set of theorems that can be proved with a logical system will depend on the number of axioms 
and the inference rules that we consider. If we select few axioms and inference rules, there will be 
few candidates for theorems. In contrast, if we select many axioms and inference rules, any WFFs will 
be probably a theorem.  
 

2.6.2. Deductive arguments 
In an argumentation where we use a logical deduction, we start from a set of hypotheses, 

𝑨𝑨𝟏𝟏,𝑨𝑨𝟐𝟐, . . . ,𝑨𝑨𝒏𝒏, that are propositions whose truth value is considered T, to reach a conclusion or 
thesis, 𝐵𝐵, that is another proposition. 

Using natural language, we describe an argumentation as follows:  
‘If 𝐴𝐴1 happens, and 𝐴𝐴2 happens, … and 𝐴𝐴𝑛𝑛 happens, then 𝐵𝐵 will happen’ 

Example 
‘If it rains (𝐴𝐴1) and I do not have an umbrella (𝐴𝐴2), then I will get wet (𝐵𝐵)’ 
To turn this into the logic language, we will write: 𝐴𝐴1 ∧ 𝐴𝐴2 → 𝐵𝐵. 
 
In general, a deductive argumentation is turned into the logic language using the form:  

𝐴𝐴1 ∧ 𝐴𝐴2 ∧. . . . .∧ 𝐴𝐴𝑛𝑛 → 𝐵𝐵 
Definition 
The argumentation 𝐴𝐴1 ∧ 𝐴𝐴2 ∧. . . . .∧ 𝐴𝐴𝑛𝑛 → 𝐵𝐵 is valid if it is a tautology. 
Comments 
 To prove that an argumentation 𝐴𝐴1 ∧ 𝐴𝐴2 ∧. . . . .∧ 𝐴𝐴𝑛𝑛 → 𝐵𝐵 is valid, we will consider that the 
hypotheses 𝑨𝑨𝟏𝟏,𝑨𝑨𝟐𝟐, . . . ,𝑨𝑨𝒏𝒏 have a truth assignment of T. We will use any of the formal logical systems 
in the example to obtain, trough the formal proof, the thesis 𝐵𝐵 as a theorem. 
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  If instead of the form 𝐴𝐴1 ∧ 𝐴𝐴2 ∧. . . . .∧ 𝐴𝐴𝑛𝑛 → 𝐵𝐵 we have an argumentation with the form 𝐴𝐴1 ∧ 𝐴𝐴2 ∧
. . . . .∧ 𝐴𝐴𝑛𝑛 → (𝐴𝐴𝑛𝑛+1 → 𝐵𝐵) (in natural language, it will be ‘If 𝐴𝐴1 happens, and 𝐴𝐴2 happens, …, and 𝐴𝐴𝑛𝑛 
happens, then if 𝐴𝐴𝑛𝑛+1 happens, 𝐵𝐵 will happen’ ), we would use the formula 𝐴𝐴1 ∧ 𝐴𝐴2 ∧. . . . .∧ 𝐴𝐴𝑛𝑛 ∧ 𝐴𝐴𝑛𝑛+1 →

𝐵𝐵, which is logically equivalent to 𝐴𝐴1 ∧ 𝐴𝐴2 ∧. . . . .∧ 𝐴𝐴𝑛𝑛 → (𝐴𝐴𝑛𝑛+1 → 𝐵𝐵), according to the tautology 𝑃𝑃 →
(𝑄𝑄 → 𝑅𝑅) ↔ 𝑃𝑃 ∧ 𝑄𝑄 → 𝑅𝑅 and the rule of replacement.  
 Since the formal logical system that we have seen are complete and correct, we can summarize 
the tautologies in the formal proofs.  
 
Example 
1. To prove the validity of the argument:  
‘If I study, I will pass the subjects; and if I pass the subjects, I will be a computer engineer. Since I 

study, I will be a computer engineer´ 
We follow these steps: 
Step 1. Assign the symbols to the propositions that compose the argument: 

𝐴𝐴 =  'I study' 

𝐵𝐵 =  'I pass' 

𝐶𝐶 =  'I will be a computer engineer' 
Step 2. Determine the WFF associated to the argument: 

(𝐴𝐴 → 𝐵𝐵) ∧ (𝐵𝐵 → 𝐶𝐶) → (𝐴𝐴 → 𝐶𝐶) 

⇕�𝑃𝑃→(𝑄𝑄→𝑅𝑅)�↔𝑃𝑃∧𝑄𝑄→𝑅𝑅+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛 

(𝐴𝐴 → 𝐵𝐵) ∧ (𝐵𝐵 → 𝐶𝐶) ∧ 𝐴𝐴���������������
Hypothesis

→ 𝐶𝐶⏟
Thesis

 

Step 3. Build a formal proof that ends up in the thesis of our argument: 
1. 𝐴𝐴 → 𝐵𝐵 (hypothesis) 
2. 𝐵𝐵 → 𝐶𝐶 (hypothesis) 
3. 𝐴𝐴   (hypothesis) 
4. 𝐵𝐵 (1. 3. and modus ponens (𝑃𝑃 ∧ (𝑃𝑃 → 𝑄𝑄) → 𝑄𝑄)) 
5. 𝐶𝐶 (2., 4. and modus ponens) 

2. To prove the validity of the argument:  
‘If I study or I am a genius, I will pass Discrete Mathematics. If I pass Discrete Mathematics, I will 
be able to pass the course. Therefore, if I cannot pass the year, then I am not a genius.  
We follow these steps: 

Step 1. Assign the symbols to the propositions that compose the argument: 
𝐴𝐴 =  'I study' 

𝐵𝐵 =  'I am a genius' 

𝐶𝐶 =  'I will pass Discrete Mathematics' 

𝐷𝐷 =  'I will pass the year' 
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Step 2. Determine the WFF associated to the argument: 

�(𝐴𝐴 ∨ 𝐵𝐵) → 𝐶𝐶� ∧ (𝐶𝐶 → 𝐷𝐷) → (¬𝐷𝐷 → ¬𝐵𝐵) 

⇕ 

�(𝐴𝐴 ∨ 𝐵𝐵) → 𝐶𝐶� ∧ (𝐶𝐶 → 𝐷𝐷) ∧ ¬𝐷𝐷���������������������
Hypothesis

→ ¬𝐵𝐵�
Thesis

 

Step 3. Build a formal proof that ends up in the thesis of our argument: 
1. (𝐴𝐴 ∨ 𝐵𝐵) → 𝐶𝐶 (hypothesis) 

2. (𝐶𝐶 → 𝐷𝐷) (hypothesis) 
3. ¬𝐷𝐷   (hypothesis) 
4. ¬𝐶𝐶 (2., 3. tautology (𝑃𝑃 → 𝑄𝑄) ↔ (¬𝑄𝑄 → ¬𝑃𝑃) and rule of replacement) 
5. ¬(𝐴𝐴 ∨ 𝐵𝐵) (1., 4. tautology (𝑃𝑃 → 𝑄𝑄) ↔ (¬𝑄𝑄 → ¬𝑃𝑃) and rule of replacement) 
6. ¬𝐴𝐴 ∧ ¬𝐵𝐵 (5., tautology ¬(𝑃𝑃 ∨ 𝑄𝑄) ↔ ¬𝑃𝑃 ∧ ¬𝑄𝑄 and rule of replacement) 
7. ¬𝐵𝐵 (6., tautology (𝑃𝑃 ∧ 𝑄𝑄) → 𝑄𝑄 and rule of replacement) 

Comments 
 To prove that an argument is valid, we can use the different formal proofs. The formal proof which 
proves the validity of an argument is not unique.  
 Some arguments are not valid. To prove that an argument expressed by 𝐴𝐴1 ∧ 𝐴𝐴2 ∧. . . . .∧ 𝐴𝐴𝑛𝑛 → 𝐵𝐵 is 
not valid, we have several options. 

1. The first option is to follow the steps of the previous examples until we build a formal 
proof which leads to a contradiction. However, this method is not easy because 
tautologies and inference rules are applied aimlessly, so we might reach neither a 
contradiction nor a proof. 

2. The second option is to follow the previous step until the step 2. Then, we must find 
a truth assignment for the obtained WFF that makes the WFF take a truth value of F. 
To do this, you must apply the methods to verify tautologies that were before 
described. 

 

2.7.  Disjunctive and Conjunctive normal forms 
Given a WFF, we know how to build the truth table. Nevertheless, we can raise the inverse problem: 

can we find the WFF associated with a truth table? 
The answer is affirmative. To achieve it, we can use two equivalent options: (1) to calculate the 

disjunctive normal form of the table, or (2) to calculate the conjunctive normal form of the table. 
Both methods will lead to different but equivalent WFFs (Note that both forms will have the same truth 

table). These two methods are presented through examples below. 
 
  



  DISCRETE MATHEMATICS 
  UNIT 2.  
 Formal Logic 
  

  

África Domingo   Discrete mathematics 17 

Example 
Given the following truth table where 𝑃𝑃,𝑄𝑄 and 𝑅𝑅 are arbitrary propositions: 
 

𝑷𝑷 𝑸𝑸 𝑹𝑹 ¿?  

T T T T  
T T F F  
T F T F  
T F F T  
F T T F  
F T F T  
F F T F  
F F F F  

 
Disjunctive normal form 
Step 1. Select the rows of the table where the truth value is T: 

 
𝑷𝑷 𝑸𝑸 𝑹𝑹 ¿?  

T T T T ← 
T T F F  
T F T F  
T F F T ← 

F T T F  
F T F T ← 
F F T F  
F F F F  

 
Step 2. For each one of these rows, we obtain an element of the form. Specifically, the 
conjunction of the propositions corresponding to a row is an element of the form. If the truth value 
of a proposition is T, we consider the proposition. If the truth value of a proposition is F, we consider 
the negation of the proposition. 
 
𝑷𝑷 𝑸𝑸 𝑹𝑹 ¿?  

T T T T (𝑃𝑃 ∧ 𝑄𝑄 ∧ 𝑅𝑅) 
T F F T (𝑃𝑃 ∧ ¬𝑄𝑄 ∧ ¬𝑅𝑅) 

F T F T (¬𝑃𝑃 ∧ 𝑄𝑄 ∧ ¬𝑅𝑅) 
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Step 3. We join all the elements obtained by the previous step using the operator disjunction.  
The obtained WFF is the disjunctive normal form, which is associated with the truth table:  

(𝑃𝑃 ∧ 𝑄𝑄 ∧ 𝑅𝑅) ∨ (𝑃𝑃 ∧ ¬𝑄𝑄 ∧ ¬𝑅𝑅) ∨ (¬𝑃𝑃 ∧ 𝑄𝑄 ∧¬𝑅𝑅) 
 
Conjunctive normal form 
Step 1. Select the rows of the table where the truth value is F: 
 

𝑷𝑷 𝑸𝑸 𝑹𝑹 ¿?  

T T T T  
T T F F ← 

T F T F ← 
T F F T  
F T T F ← 
F T F T  
F F T F ← 

F F F F ← 
 
Step 2. For each one of these rows, we obtain an element of the form. Specifically, the 
disjunction of the propositions corresponding to a row is an element of the form. If the truth value 
of a proposition is T, we consider the negation of proposition. If the truth value of a proposition is F, 
we consider the proposition. 
 
𝑷𝑷 𝑸𝑸 𝑹𝑹 ¿?  

T T F F (¬𝑃𝑃 ∨ ¬𝑄𝑄 ∨ 𝑅𝑅) 
T F T F (¬𝑃𝑃 ∨ 𝑄𝑄 ∨ ¬𝑅𝑅) 
F T T F (𝑃𝑃 ∨ ¬𝑄𝑄 ∨ ¬𝑅𝑅) 
F F T F (𝑃𝑃 ∨ 𝑄𝑄 ∨ ¬𝑅𝑅) 
F F F F (𝑃𝑃 ∨ 𝑄𝑄 ∨ 𝑅𝑅) 

 
Step 3. We join all the elements obtained by the previous step using the operator conjunction.  
The obtained WFF is the disjunctive normal form, which is associated with the truth table:  

(¬𝑃𝑃 ∨ ¬𝑄𝑄 ∨ 𝑅𝑅) ∧ (¬𝑃𝑃 ∨ 𝑄𝑄 ∨ ¬𝑅𝑅) ∧ (𝑃𝑃 ∨¬𝑄𝑄 ∨ ¬𝑅𝑅) ∧ (𝑃𝑃 ∨ 𝑄𝑄 ∨ ¬𝑅𝑅) ∧ (𝑃𝑃 ∨ 𝑄𝑄 ∨ 𝑅𝑅) 
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2.8. Propositional logic and Boolean algebra 
Definition 
A Boolean algebra is a quadruple of the form (𝛣𝛣, ′, +,·),  where:  
 𝛣𝛣 is a set.  
 ′:𝛣𝛣 → 𝛣𝛣|𝑥𝑥 → 𝑥𝑥′, is a unitary operation.  
 +:𝛣𝛣 × 𝛣𝛣 → 𝛣𝛣|(𝑥𝑥,𝑦𝑦) → 𝑥𝑥 + 𝑦𝑦, is a binary operation. 
 ·:𝛣𝛣 × 𝛣𝛣 → 𝛣𝛣|(𝑥𝑥, 𝑦𝑦) → 𝑥𝑥 · 𝑦𝑦, is a binary operation.  
Verifying that: 
1. 𝑥𝑥′, (𝑥𝑥 + 𝑦𝑦), (𝑥𝑥 · 𝑦𝑦) ∈ 𝛣𝛣∀𝑥𝑥, 𝑦𝑦 ∈ 𝛣𝛣, so they are internal operations. 

2. Commutative Laws for binary operations 
3. Associative Laws for binary operations 
4. Distributive Laws between both binary properties 
5. Identity Law for each one of the operations 
6. Complementation law  

 
Exercise 
Prove that: 

1. (𝑃𝑃, ¬,∧,∨) is a Boolean algebra where 𝑃𝑃 is a set composed by all WFFs.  
2. (𝑃𝑃(𝑈𝑈), ( )𝑐𝑐 ,∪,∩) is a Boolean algebra where 𝑈𝑈 is an arbitrary set. 

Use any of the formal logical systems to prove the properties of the algebra of sets. 
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3. First-order logic (Predicate logic) 
The deductive thinking model of propositional logic is too simple. It is easy to find argumentations that 

cannot be analyzed with this model: ‘ (𝑥𝑥 < 3) ∧ (𝑦𝑦 < 0) → (𝑥𝑥 · 𝑦𝑦 < 0)’. If we consider that 𝑥𝑥 represents a 
natural number, this statement is true. However, if 𝑥𝑥 represents a real number, this statement is false.  

The validity of the previous argumentation depends not only on the relation between the hypothesis 
and thesis, but also of the objects that appear, of their definition domain, and of the relations that are 
between them. 

The model of first-order logic tackles this kind of statements. This model has a greater capacity that 
the model of propositional logic and is the one used in mathematics proofs. 

 

3.1.  First-order language 
To define a first-order language, we need a set of symbols and a set of rules that allow us to build the 

elements of our language. The rules indicate whether a sequence of symbols (expressions) has a meaning 
in our language: 

1. Set of symbols: 
A. Logical symbols: 

1. Parentheses ( )  
2. Logical connectives: ¬,∧,∨,→ y ↔ 
3. Variables 𝑥𝑥1,𝑥𝑥2, . .. 
4. The equals sign= (Optional) 

B. Parameters 
1. Quantifier ∀ (Universal) ∃ (Existential) 
2. Symbols of constants:∞,∅, . . . ,0,1, . . . ,𝜋𝜋, 
3. Symbol of function: 𝑓𝑓,𝑔𝑔, . . . ,×,−, +,/, . .. 
4. Symbol of predicate:  𝑃𝑃,𝑄𝑄,𝑅𝑅, . . ,∈, <, >,⊂, ,∪,∩, =, . .. 
 

2. Set of rules to build a semantic unit: 
A. Terms: Names of objects or their relations. 
A term is: 

1. A constant or a variable. 
2. If 𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑛𝑛 are terms and 𝑓𝑓𝑛𝑛 is a symbol of a 𝑛𝑛-ary function (with n arguments), 
𝑓𝑓(𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑛𝑛) is a term. 
3. No sequence of symbols (expression) is a term unless bound by 1. or 2. 

B. Formulas or well-formed formulas: Assertions about objects or their relations. 
1. If 𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑛𝑛 are terms and 𝑃𝑃𝑛𝑛 is a symbol of a 𝑛𝑛-ary predicate (with n arguments), then   
𝑃𝑃𝑛𝑛(𝑡𝑡1, 𝑡𝑡2, . . . , 𝑡𝑡𝑛𝑛) is an well-formed formula. 
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2. If 𝐴𝐴 and 𝐵𝐵 are well-formed formulas, then (∀𝑥𝑥)(𝐴𝐴), (∃𝑥𝑥)(𝐴𝐴),(¬𝐴𝐴), (𝐴𝐴 ∧ 𝐵𝐵), (𝐴𝐴 ∨ 𝐵𝐵), 
(𝐴𝐴 → 𝐵𝐵) and (𝐴𝐴 ↔ 𝐵𝐵) are also well-formed formulas. 
3. No sequence of symbols (expression) is a well-formed formula unless bound by 1. or 2. 

 
Examples 
1. The formal language of set theory is composed of the following symbols: 
 All the logical symbols that appear in the list, even the equals sign.  
 A symbol of binary predicate: ∈ 
 A symbol of constant: ∅ 
Some other symbols are usually added to simplify the notation: ⊆,⊃,∩,∪. .. 
2. ‘Exists n that is an even number’ would be translated into the first-order language as: (∃𝑛𝑛)�𝑃𝑃(𝑛𝑛)�, 

where 𝑛𝑛 is a variable, ∃ is the quantifier, and 𝑃𝑃(𝑛𝑛) is the predicate ‘𝑛𝑛 𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑒𝑒𝑛𝑛’. The truth value 

of this WFF depends on the domain of the variable. If the domain is ℤ, we will say that (∃𝑛𝑛 ∈ ℤ)�𝑃𝑃(𝑛𝑛)� 

is a WFF which is true. However, if the domain of the variable is 𝐷𝐷 = {2𝑛𝑛 − 1}𝑛𝑛∈ℤ,  (∃𝑛𝑛 ∈ 𝐷𝐷)�𝑃𝑃(𝑛𝑛)� is 

a false predicate. 
3.  ‘Every real number 𝑥𝑥 verifies that |𝑥𝑥| is greater or equal than zero´. It would be expressed 

as:(∀𝑥𝑥 ∈ ℝ)(|𝑥𝑥| ≥ 0). If we only write (∀𝑥𝑥)�𝑃𝑃(𝑥𝑥)� where 𝑃𝑃(𝑥𝑥) = ′ � 𝑥𝑥⎵
𝑣𝑣𝑣𝑣𝑣𝑣 𝑆𝑆𝑣𝑣𝑎𝑎𝑎𝑎𝑎𝑎

�
������
𝑓𝑓𝑆𝑆𝑛𝑛𝑐𝑐𝑆𝑆𝑆𝑆𝑆𝑆𝑛𝑛

≥⎵
𝑆𝑆𝑠𝑠𝑠𝑠𝑎𝑎𝑆𝑆𝑎𝑎 𝑆𝑆𝑓𝑓 𝑝𝑝𝑣𝑣𝑎𝑎𝑝𝑝𝑆𝑆𝑐𝑐𝑣𝑣𝑆𝑆𝑎𝑎

0⎵
𝑐𝑐𝑆𝑆𝑛𝑛𝑆𝑆𝑆𝑆𝑣𝑣𝑛𝑛𝑆𝑆

�����������������������
𝑝𝑝𝑣𝑣𝑎𝑎𝑝𝑝𝑆𝑆𝑐𝑐𝑣𝑣𝑆𝑆𝑎𝑎

′, 

we are not specifying the domain of the variable.  
 
Comments: 
 When we are stating general WFFs (to prove their validity, in formal examples…), we will not 
specify the domain of the variable.  
 The domain of variable will be specified when we work with particular interpretations of the WFFs.  

 
 

3.2.  Bound variables and free variables 

A variable is bound when: 

1. It is associated with a quantifier e.g., ( )x∃ (∀𝑥𝑥) 

2. The predicate to which the variable belongs is affected by a quantifier (∀𝑥𝑥)𝑃𝑃(𝑥𝑥)  
 
A variable is free when it is not bound. It can be understood as a constant or a specific case. In 
some cases, we will use the first of the alphabet for the free variables, and we will use the last letters 
of the alphabet for the bound variables.  
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Examples 
1.  In the WFF (∀𝑥𝑥)[(∃𝑦𝑦)𝑃𝑃(𝑥𝑥,𝑦𝑦) ∧ 𝑄𝑄(𝑥𝑥,𝑦𝑦)], the variable 𝑦𝑦 is bound for the first two times that it 
appears (the first time for 1. Is associated with a quantifier, and the second time (in 𝑃𝑃(𝑥𝑥, 𝑦𝑦)) for 2.), 
because the predicate 𝑃𝑃(𝑥𝑥, 𝑦𝑦)  is affected by the previous quantifier. However, this variable is free in 
𝑄𝑄(𝑥𝑥,𝑦𝑦).  
2. In the WFF (∀𝑥𝑥)[𝑃𝑃(𝑥𝑥,𝑦𝑦) → (∀𝑦𝑦)𝑄𝑄(𝑦𝑦)], the variable 𝑥𝑥 is bound the two times that it appears. In 
contrast, the variable 𝑦𝑦 is free the first time that it appears and is bound the following two times that 
it appears. 
 
Comments 
 Remember that the criteria to remove the parentheses can be summarized as follows: The logical 
operators only affect what immediately follows the operators.  
 This assertation can be generalized for the quantifiers. A quantifier only affects to the predicate 
that immediately follows the quantifier.  
 To modify the range of the quantifiers (i.e., when more than one predicate is affected by the same 
quantifier), as well as to modify the range of the logical operators, we must use parentheses. 

 
3.3.  Validity 
Definitions: 
A WFF is valid when it is true for all their possible interpretations.  
A WFF is contradictory when it is false for all their possible interpretations.  
 
Comments: 
 These definitions are similar to the definitions of tautology and contradiction that we have seen in 
the propositional logic model.  
 To prove that a WFF is not valid, we must fin an interpretation of the WFF whose value is false.  
 A WFF interpretation of the first-order logic consists of assigning values to the constants and 
assertations that appear in it and defining a domain of interpretation for the variables.  
 
Examples 
1.  The WFF (∀𝑥𝑥)𝑃𝑃(𝑥𝑥) → (∃𝑥𝑥)𝑃𝑃(𝑥𝑥) is valid. 
2.  The WFF (∃𝑥𝑥)𝑃𝑃(𝑥𝑥) → (∀𝑥𝑥)𝑃𝑃(𝑥𝑥) is not valid. For example, given 𝑃𝑃(𝑥𝑥) = ′𝑥𝑥 is even' and its domain 
of interpretation is 𝑥𝑥 ∈ ℤ: although there is an even number, it does not mean that all the integer 
numbers are even numbers. 
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3.4. Predicate calculus 
The deductive argumentations have the same form as in the formal logical model, We will be able to 

logically deduct that a WFF is valid through formal proofs.   
To argue the first-order formal proofs, we will use a more powerful formal logical system. It includes 

some axioms and more deductive rules.  
Furthermore, to prove that a WFF or an argumentation is not valid, we only need to find an 

interpretation of the WFF or of the argumentation whose truth value is false. 
  
Formal logical system for the first-order logic  

Axioms: ∀𝑃𝑃,𝑄𝑄,𝑅𝑅 WFFs, it is verified that: 
1. 𝑃𝑃 → (𝑄𝑄 → 𝑃𝑃) 

2. �𝑃𝑃 → (𝑄𝑄 → 𝑅𝑅)� → �(𝑃𝑃 → 𝑄𝑄) → (𝑃𝑃 → 𝑅𝑅)� 

3. (¬𝑄𝑄 → ¬𝑃𝑃) → (𝑃𝑃 → 𝑄𝑄) 

4. (∀𝑥𝑥)�𝑃𝑃(𝑥𝑥) → 𝑄𝑄(𝑥𝑥)� → �(∀𝑥𝑥)𝑃𝑃(𝑥𝑥) → (∀𝑥𝑥)𝑄𝑄(𝑥𝑥)� [Distributive] 

5. (∀𝑥𝑥)𝑃𝑃(𝑥𝑥) → 𝑃𝑃(𝑥𝑥) or  (∀𝑥𝑥)𝑃𝑃(𝑥𝑥) → 𝑃𝑃(𝑎𝑎), where 𝑎𝑎 is any constant of the same definition domain 
than 𝑥𝑥. [Universal Exemplification] 

6. (∃𝑥𝑥)𝑃𝑃(𝑥𝑥) → 𝑃𝑃(𝑡𝑡), where 𝑡𝑡 is any variable or constant that is not used in the sequence of the 
proof. [Existential Exemplification] 

7. 𝑃𝑃(𝑥𝑥) → (∃𝑥𝑥)𝑃𝑃(𝑥𝑥) or 𝑃𝑃(𝑎𝑎) → (∃𝑥𝑥)𝑃𝑃(𝑥𝑥), where 𝑎𝑎 is any constant and 𝑥𝑥 is a variable that does 
not appear in 𝑃𝑃(𝑎𝑎). [Existential Generalization] 

8. ¬�(∃𝑥𝑥)𝑃𝑃(𝑥𝑥)� ↔ (∀𝑥𝑥)�¬𝑃𝑃(𝑥𝑥)� [Negation] 

 
Inference Rules 

1. Rule of replacement: The result of replacing any element of a theorem by a WFF is a 
theorem.  

For example, if we replace 𝑃𝑃 by 𝐴𝐴 ∧ 𝐵𝐵 in the axiom 1. (𝑷𝑷 ∨ 𝑷𝑷) → 𝑷𝑷, we will obtain that  
�(𝑨𝑨 ∧ 𝑩𝑩) ∨ (𝑨𝑨 ∧ 𝑩𝑩)� → (𝑨𝑨 ∧ 𝑩𝑩) is another theorem of this formal logical system. 
2. Modus ponens: 𝑃𝑃 ∧ (𝑃𝑃 → 𝑄𝑄) → 𝑄𝑄. If 𝑃𝑃 and 𝑃𝑃 → 𝑄𝑄 are theorems, then 𝑄𝑄 is a theorem.  

3. Universal Generalization: 𝑄𝑄(𝑎𝑎) → ∀𝑥𝑥�𝑄𝑄(𝑥𝑥)� provided that: 

a. 𝑄𝑄(𝑎𝑎) has not been deducted from a hypothesis where 𝑥𝑥 is the free variable. 
b. 𝑄𝑄(𝑎𝑎) has not been deducted through the axiom 6. from a WFF with the form (∃𝑦𝑦)𝑄𝑄(𝑦𝑦). 

Comments 
 This formal logical system is complete. In other words, every valid WFF is a theorem in a logical 
system and is correct. That means that every theorem is a valid formula. 
 If we had used the axioms of A. N. Whitehead and B. Rusell instead of the first four axioms, we 
would have obtained a different formal logical system that would be also correct and complete.  
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 Since the formal logical system is correct and complete. In our formal proofs, we will be able to 
use all the tautologies that we have seen and all the argumentations that are valid according to the 
proofs previously performed.  
 
Practical summary: 
To build formal proofs in first-order logic, we only have to include the following axioms and inference 
rules to the set of axioms and rules that we used to build formal proofs in propositional logic. 
Note that all the WFFs in this section are valid in the first-order logic. This verification is easy from the 
axioms and inference rules of the previous formal logical order.  

 
 Negation of quantifiers 

1. ¬�(∃𝒙𝒙)𝑷𝑷(𝒙𝒙)� ↔ (∀𝒙𝒙)�¬𝑷𝑷(𝒙𝒙)�  

2. ¬�(∀𝒙𝒙)𝑷𝑷(𝒙𝒙)� ↔ (∃𝒙𝒙)�¬𝑷𝑷(𝒙𝒙)�  

 
 Inference rules of universal and existential generalization and inference rules of universal and 

existential exemplification. To add and remove quantifiers. 
 

1. Universal Exemplification (UE). (∀𝑥𝑥)𝑃𝑃(𝑥𝑥) → 𝑃𝑃(𝑎𝑎) 

Given a true statement of the form (∀𝑥𝑥)𝑃𝑃(𝑥𝑥), provided that the variable x is replaced by constants of 
its interpretation domain, the statement will be true.  

 
2. Universal Generalization (UG). 𝑃𝑃(𝑎𝑎) → (∀𝑥𝑥)𝑃𝑃(𝑥𝑥) 

If a predicate 𝑃𝑃(𝑎𝑎) is true for all the constants of its interpretation domain, we can infer the truth of 
(∀𝑥𝑥)𝑃𝑃(𝑥𝑥). 

 
3. Existential Exemplification (EE). (∃𝑥𝑥)𝑃𝑃(𝑥𝑥) → 𝑃𝑃(𝑎𝑎) 

Given a true statement of the form (∃𝑥𝑥)𝑃𝑃(𝑥𝑥), we can infer out of it a substitution case of the 
propositional function, with the restriction of using a constant or variable (in this case 𝑎𝑎) that has not 

appeared before within the proof. That is, a constant or variable that has not been specified of delimited.  
 

4. Existential Generalization (EG). 𝑃𝑃(𝑎𝑎) → (∃𝑥𝑥)𝑃𝑃(𝑥𝑥) 
If a predicate 𝑃𝑃(𝑎𝑎) is true for at least one of its substitution cases as constants of its interpretation 

domain, we can infer the truth of (∃𝑥𝑥)𝑃𝑃(𝑥𝑥).  
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Comments: 
 The restriction in EE has the function of avoiding invalid inferences such as:  
"Some men are wise, so Peter is wise."  
We want to prove that: 

(∃𝑥𝑥)�𝑀𝑀(𝑥𝑥) ∧𝑊𝑊(𝑥𝑥)� → 𝑊𝑊(𝑝𝑝) 

So we construct the next formal proof: 

1. (∃𝑥𝑥)�𝑀𝑀(𝑥𝑥) ∧𝑊𝑊(𝑥𝑥)� (Hypothesis) 

2. 𝑀𝑀(𝑝𝑝) ∧𝑊𝑊(𝑝𝑝) (1 and EE, if the restriction did not exist).  
3. 𝑊𝑊(𝑝𝑝)   (2 and the simplification of the conjunction).  

 Since the constant p has already appeared in the proposition to be proved, the restriction 
prevents that it to be used in the second step. When EE and UE have to be applied in a proof as in 
the example, it is necessary to apply EE (it is the rule with restrictions), and then, UE can be applied 
on the same constant without problems. 
 
Example 
Show the validity of the following reasoning: 

‘Dogs are vertebrates and mammals. 
Some dogs are guardians.  

Then some vertebrates are guardians.’ 
The representation of this reasoning in the language of the first-order logic is: 

�(∀𝑥𝑥)𝑃𝑃(𝑥𝑥) → �𝑉𝑉(𝑥𝑥) ∧ 𝑀𝑀(𝑥𝑥)�� ∧ �(∃𝑥𝑥)�𝑃𝑃(𝑥𝑥) ∧ 𝐺𝐺(𝑥𝑥)�� → (∃𝑥𝑥)�𝑉𝑉(𝑥𝑥) ∧ 𝐺𝐺(𝑥𝑥)� 

From the following formal proof, we will be able to prove the validity of this reasoning: 

1. (∀𝑥𝑥)𝑃𝑃(𝑥𝑥) → �𝑉𝑉(𝑥𝑥) ∧ 𝑀𝑀(𝑥𝑥)�  

2. (∃𝑥𝑥)�𝑃𝑃(𝑥𝑥) ∧ 𝐺𝐺(𝑥𝑥)�  

3. 𝑃𝑃(𝑎𝑎) ∧ 𝐺𝐺(𝑎𝑎) EE in 2 (a is a constant / free variable which is particular, but it is 
not specified).  

4. 𝑃𝑃(𝑎𝑎) → �𝑉𝑉(𝑎𝑎) ∧ 𝑀𝑀(𝑎𝑎)� UE in 1.  

5. 𝑃𝑃(𝑎𝑎)  simplification of 3. 
6. 𝑉𝑉(𝑎𝑎) ∧ 𝑀𝑀(𝑎𝑎) 4 and 5 modus ponens 

7. 𝐺𝐺(𝑎𝑎)                  simplification in 3.  
8. 𝐺𝐺(𝑎𝑎) ∧ 𝑉𝑉(𝑎𝑎) conjunction 6 y 7.  

9. (∃𝑥𝑥)�𝑉𝑉(𝑥𝑥) ∧ 𝐺𝐺(𝑥𝑥)� EG in 8.  

 
 Distributive laws.  

1. (∀𝑥𝑥)�𝑃𝑃(𝑥𝑥) ∧ 𝑄𝑄(𝑥𝑥)� ⇔ (∀𝑥𝑥)𝑃𝑃(𝑥𝑥) ∧ (∀𝑥𝑥)𝑄𝑄(𝑥𝑥) 

2. (∃𝑥𝑥)�𝑃𝑃(𝑥𝑥) ∨ 𝑄𝑄(𝑥𝑥)� ⇔ (∃𝑥𝑥)𝑃𝑃(𝑥𝑥) ∨ (∃𝑥𝑥)𝑄𝑄(𝑥𝑥)    

3. (∀𝑥𝑥)𝑃𝑃(𝑥𝑥) ∨ (∀𝑥𝑥)𝑄𝑄(𝑥𝑥) ⇒ (∀𝑥𝑥)�𝑃𝑃(𝑥𝑥) ∨ 𝑄𝑄(𝑥𝑥)�   
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4. (∃𝑥𝑥)�𝑃𝑃(𝑥𝑥) ∧ 𝑄𝑄(𝑥𝑥)� ⇒ (∃𝑥𝑥)𝑃𝑃(𝑥𝑥) ∧ (∃𝑥𝑥)𝑄𝑄(𝑥𝑥)  

5. (∀𝑥𝑥)�𝑃𝑃(𝑥𝑥) → 𝑄𝑄(𝑥𝑥)� ⇒ (∀𝑥𝑥)𝑃𝑃(𝑥𝑥) → (∀𝑥𝑥)𝑄𝑄(𝑥𝑥)   

 
Comments: 
 The reciprocal implication of 3 is not always true. For example, if we suppose that all real numbers 
are rational or irrational, we will not be able to conclude that all real numbers are rational or that all 
real numbers are irrational.  
 The reciprocal implication of 4 is not always true. For example, although there are rational numbers 
and there are irrational numbers, we cannot conclude that some numbers are rational and irrational 
simultaneously.  
 
Example 
We will write the following argument with symbols, and we will prove its validity through a formal 

proof.  
 ‘Any dragon is green or yellow. The father of a yellow dragon is always yellow. The mother of a green 
dragon is always green. We know that there is a dragon whose mother is not green, so there is a dragon 
whose father is yellow’ 

 
Step 1. Interpretation domain 

Dragons 
Step 2. Symbols of function: 

𝑝𝑝(𝑥𝑥) = 𝑥𝑥′𝑠𝑠 𝑓𝑓𝑎𝑎𝑡𝑡ℎ𝑒𝑒𝑛𝑛  
𝑛𝑛(𝑥𝑥) = 𝑥𝑥′𝑠𝑠 𝑛𝑛𝑚𝑚𝑡𝑡ℎ𝑒𝑒𝑛𝑛 

Step 3. Creating the symbols of the predicate: 
𝐴𝐴(𝑥𝑥) =′ 𝑥𝑥 𝑖𝑖𝑠𝑠 𝑦𝑦𝑒𝑒𝑦𝑦𝑦𝑦𝑚𝑚𝑦𝑦′ 

𝐵𝐵(𝑥𝑥) =′ 𝑥𝑥 𝑖𝑖𝑠𝑠 𝑔𝑔𝑛𝑛𝑒𝑒𝑒𝑒𝑛𝑛′ 
Step 4. Building the well-formed formula (WFF) 

 
PREDICATES 
(HYPOTHESIS) Any dragon is green or yellow:  

(∀𝑥𝑥)�𝐴𝐴(𝑥𝑥) ∨ 𝐵𝐵(𝑥𝑥)� 

(HYPOTHESIS) The father of a yellow dragon is always yellow: 
(If a dragon is yellow, its father will be yellow) 

(∀𝑥𝑥) �𝐴𝐴(𝑥𝑥) → 𝐴𝐴�𝑝𝑝(𝑥𝑥)�� (It can be biconditional) 

(HYPOTHESIS) The mother of a green dragon is always green.  
(If a dragon is green, its mother will be green) 

(∀𝑥𝑥) �𝐵𝐵(𝑥𝑥) → 𝐵𝐵�𝑛𝑛(𝑥𝑥)�� (It can be also biconditional) 
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(HYPOTHESIS) There is a dragon whose mother is not green.  

(∃𝑥𝑥) �¬𝐵𝐵�𝑛𝑛(𝑥𝑥)�� 

 
Therefore → 
(THESIS) There is a dragon whose father is yellow.  

(∃𝑥𝑥) �𝐴𝐴�𝑝𝑝(𝑥𝑥)�� 

WFF 

�(∀𝑥𝑥)�𝐴𝐴(𝑥𝑥) ∨ 𝐵𝐵(𝑥𝑥)�� ∧ �(∀𝑥𝑥) �𝐴𝐴(𝑥𝑥) → 𝐴𝐴�𝑝𝑝(𝑥𝑥)��� ∧ �(∀𝑥𝑥) �𝐵𝐵(𝑥𝑥) → 𝐵𝐵�𝑛𝑛(𝑥𝑥)��� ∧ �(∃𝑥𝑥) �¬𝐵𝐵�𝑛𝑛(𝑥𝑥)���

→ �(∃𝑥𝑥)𝐴𝐴�𝑝𝑝(𝑥𝑥)�� 

Step 5. Formal proof 

1. (∀𝑥𝑥)�𝐴𝐴(𝑥𝑥) ∨ 𝐵𝐵(𝑥𝑥)� (HYPOTHESIS)  

2. (∀𝑥𝑥) �𝐴𝐴(𝑥𝑥) → 𝐴𝐴�𝑝𝑝(𝑥𝑥)�� (HYPOTHESIS) 

3. (∀𝑥𝑥) �𝐵𝐵(𝑥𝑥) → 𝐵𝐵�𝑛𝑛(𝑥𝑥)�� (HIPOTHESIS) 

4. (∃𝑥𝑥)¬𝐵𝐵�𝑛𝑛(𝑥𝑥)� (HYPOTHESIS) 

5. ¬𝐵𝐵�𝑛𝑛(𝑑𝑑)� (4+Existential Exemplification x=d) 

6. �𝐴𝐴(𝑑𝑑) ∨ 𝐵𝐵(𝑑𝑑)� (Universal Exemplification in 1 x=d)  

7. �𝐴𝐴(𝑑𝑑) → 𝐴𝐴�𝑝𝑝(𝑑𝑑)�� (Universal Exemplification in 2 x=d)  

8. �𝐵𝐵(𝑑𝑑) → 𝐵𝐵�𝑛𝑛(𝑑𝑑)�� (Universal Exemplification in 3 x=d)  

9. �¬𝐵𝐵�𝑛𝑛(𝑑𝑑)� → ¬𝐵𝐵(𝑑𝑑)� (8 + contraposition (𝑃𝑃 → 𝑄𝑄 ↔ ¬𝑄𝑄 → ¬𝑃𝑃) + replacement) 

10. ¬𝐵𝐵(𝑑𝑑) (5+9+Modus Ponens + replacement) 

11. 𝐴𝐴(𝑑𝑑) (1+10+�(𝑃𝑃 ∨ 𝑄𝑄) ∧¬𝑄𝑄 → 𝑃𝑃� + replacement) 

12. 𝐴𝐴�𝑝𝑝(𝑑𝑑)� (11+7 + Modus Ponens + replacement) 

13. (∃𝑥𝑥)𝐴𝐴�𝑝𝑝(𝑥𝑥)� (12+ Universal Generalization) 

 

3.5.  Applications 
First-order logic is applied for different purposes in computer science. Among them, first-order logic is 

applied to develop expert systems that are focused on decision-making problems. 
An expert system is a software program that encodes a knowledge model into a narrow field in order 

to simulate decision-making ability of a human expert (medical diagnostics, machine failure detection, 
trajectory planning, …) 

This kind of studies are developed in subjects such as artificial intelligence or theory of knowledge. In 
these subjects, one of the main problems is to represent the knowledge that a human expert has and 
translate it into a computer language.  
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