

Block 1. Descriptive statistics

PROPOSED PROBLEMS

Problem 1.1. The statistics grades for a group of students were recorded. The data were then organised, with the following result:

Grades	0	1	2	3	4	5	6	7	8	9	10
Number of students	4	2	6	15	5	16	20	6	4	2	2

- a. Determine the appropriate frequency distribution for the grades.
- b. Find the percentage of students that passed the subject (those who got a grade of 5 or higher).
- c. Find the percentage of students that got grades higher than 7.
- d. If you had to grant 8 students a place in the Erasmus programme, by how much should you increase the passing grade?
- e. Graphically represent the appropriate distributions in this problem.

Problem 1.2. The values relative to the number of students and engineering faculties in a given country are:

Students	0-	100-	200-	300-	400-	500-	600-	700-	800-
	100	200	300	400	500	600	700	800	900
Number of	18	37	11	19	20	12	5	3	2
faculties									

- a. Construct the table of frequencies appropriate for the data.
- b. Find the number of faculties with more than 400 students.
- c. Find the percentage of faculties with more than 200 and less than 500 students.

Problem 1.3. In a laboratory, a magnitude was measured and measurements were made for several values of that magnitude, as reported in the following table:

<i>x</i> _i	1	3	4	6	10
n _i	5	12	20	8	5

- a. Study the symmetry of this distribution both analytically and graphically.
- b. Quantify the degree of pointedness for this distribution.
- c. Study the normality of this distribution.

Notice that this is an integral problem. You must therefore perform a complete analysis.

Problem 1.4. The distribution of people's income is described using the Pareto principle, . Here, and represent the percentage of people with an income equal to or lower than and the minimum income, respectively. On the other hand, is a structural parameter. Adjust the Pareto principle to the following data and assess the result.

$\ln x$	0,8	1,1	1,4	1,7	2,1	2,6	3,0	3,4	4,0
у	0,02	0,100	0,190	0,350	0,500	0,745	0,800	0,90	1

Problem 1.5. The Cobb-Douglas production function, , can relate an investment to the gross domestic product. and are constants that represent the output elasticities of labour and capital. Adjust the function to the data:

y _i	2,5	2,8	3,2	4,0	5,0	5,9	7,1	9,0	11,4	13,3	14,9	17,0	20,0
K _i	0,5	0,6	0,7	1,1	1,4	1,4	1,7	1,8	2,3	2,6	2,8	3,6	3,9

Determine the best fit that allows us to obtain a regression curve. Assess the result.

- a. Determine the mean, median, standard deviation, variance, and coefficients of skewness and kurtosis for the three variables.
- b. Construct the correlation matrix and find the degree of dependency between the variables.
- c. Construct the covariance matrix and interpret the results.

J.M. Bergues