
Mathematics in Population 
dynamics: Predator-Prey Model
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Predator-Prey Systems

We first consider the following situation.
• One species, the prey, has an ample food supply.
• The second, the predator, feeds on the prey.

Examples of prey and predators include: 

• Rabbits and wolves in an isolated forest
• Food fish and sharks
• Aphids and ladybugs
• Bacteria and amoebas
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Predator-Prey Model Assumptions
The Lotka-Volterra predator-prey model makes a few important 
assumptions about the environment and the dynamics of the 
predator and prey populations:

• The prey population finds food at all times
• In the absence of a predator, the prey grows at a rate proportional to 

the current population
• The food supply of the predator population depends entirely on the 

prey populations. The growth can be calculated as dx/dt = ax
• In the absence of the prey, the predator population would decline at 

a rate proportional to itself, that is dy/dt = -βy, β>0, when x=0. 
• The predator effect is to reduce the prey growth rate, proportional to 

both the predator and prey populations proportional to the prey and 
predator populations
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Predator-Prey Model Assumptions
The Lotka-Volterra predator-prey model makes a few important 
assumptions about the environment and the dynamics of the 
predator and prey populations:

• The number of encounters between predator and prey is proportional 
to the product of their populations.

• Encounters between predator and prey tends to promote the growth 
of the predator and inhibit the growth of the prey. Thus, the growth 
rate of the predator is increased by the term γxy and the growth rate 
of the prey is decreased by the term -δxy.

• During the process, the environment does not change in favor of one 
species and the genetic adaptation is sufficiently slow.
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The General Model
Based on the assumptions for this model we have the following 
two-equation system of  autonomous, first-order, nonlinear 
differential equations:

x(t): rabbit (prey population) @ time t. 

y(t): fox (predator) population @ time t.

(1) dx/dt = αx -δxy ,The term -δxy decreases the natural growth rate of the prey.

(2) dy/dt = -βy + γxy , The term γxy  increases the natural growth rate of the 
predators. 

α, β, δ, γ > 0.

Parameters:

α: the growth rate of the prey 

β: the death rate of the predator

δ, γ: measure the effect of the interactions of  the two species
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The General Model
When (y = 0), equation (1) becomes:

(3) dx/dt = αx -δxy = αx.
dx/dt -αx = 0.

The general solution to equation 
(4) x(t) = ceαt

So, the rabbit (prey) population will increase  exponentially in the 
absence of a predator.
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Likewise, in the absence of a prey (x = 0),  equation (2) becomes:

(5) dy/dt = -βy + γxy = -βy.
dy/dt + βy = 0.

The general solution to this equation is:

(6) y(t) = ce-βt

The fox population will experience exponential

decay until extinction in the absence of prey. 

The General Model
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(1) dx/dt = αx -δxy = x(α -δy), 
(2) dy/dt = -βy + γxy = y(-β + γy); 

with   α, β, δ, γ > 0.

The Predator-Prey Model
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The Predator-Prey Model
Example,  
α = 0.02 
(the growth rate of the prey, per unit prey)

β = 0.05 
(the death rate of the predator, per unit predator)

δ = 0.0005 
γ = 0.0004
(measures effect of the interactions of the two species)

dx/dt =  0.02x -0.0005xy, 
dy/dt =  -0.05y + 0.0004xy.
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The Predator-Prey Model
We seek equilibrium points for the model.
So we set:

dx/dt =  0.02x -0.0005xy = 0, 
dy/dt =  -0.05y + 0.0004xy = 0.

And solve for x and y…  

Two solutions are:  (x, y) = (0, 0) 

&   (x, y) = (125, 40).
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The Predator-Prey Model
We seek equilibrium points for the model.
So we set:

dx/dt =  0.02x -0.0005xy = 0, 
dy/dt =  -0.05y + 0.0004xy = 0.

And solve for x and y…  
Two solutions are:  (x, y) = (0, 0) &   (x, y) = (125, 40).
If x, y are small (i.e. 0 < x, y < 1), then The product xy < x and y is even smaller.
So if we consider points close to the origin (0, 0), one of our critical points, then 

we can drop the terms: 
-0.0005xy  and  0.0004xy …

The original system of equations become a linear system of equations!

dx/dt = 0.02x, 
dy/dt = -0.05y;       α, γ > 0.
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The Predator-Prey Model
The original system of equations become a linear system of equations!

dx/dt = 0.02x, 
dy/dt = -0.05y;       α, γ > 0.

This linear system can be written as:

d/dt (x)      (0.02  0  ) (x)       
(y) =  (0   -0.05) (y) =   A*(x, y)T.

Linear Systems are of the form:
Ax = b (where x, b are vectors). 
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Remember that for the autonomous first-order linear
differential equation dx/dt = ax, the solution is 
x = ceat, where c is constant of integration. 

x = 0 is the only equilibrium solution to this equation    
if a ≠ 0.

if a ≠ 0, then 
If a < 0, then solution x(t) for dx/dt = ax is an
exponential decay over time t.

If a > 0, then solution x(t) for dx/dt = ax is an 
exponential growth over time t.

The Predator-Prey Model
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Suppose that populations of rabbits (R) and wolves (W) 
are described by the Lotka-Volterra equations with: 

α = 0.08, δ = 0.001, β= 0.02, γ = 0.00002
The time t is measured in months. 

a. Find the constant solutions (called  the equilibrium solutions) and interpret  
the answer.

b. Use the system of differential equations  to find an expression for dR/dW.

Example
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With the given values, the Lotka-Volterra equations 
become:

Example 1 a

dR/dt = αR -δRW
dW/dt = -βW + γRW

dR/dt = 0,08R-0,001RW=R(0,08-0,001W)
dW/dt = -0,02W + 0,00002RW = W(-0,02 + 0,00002R) 

Both R and W will be constant if both derivatives are 0.
That is, 

R’ = R(0.08 – 0.001W) = 0
W’ = W(– 0.02 + 0.00002R) = 0
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One solution is given by: x= 0 and y = 0 
• If there are no rabbits or wolves, the populations 

are certainly not going to increase.

Example 1 a
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Two solutions:

One solution is given by: x= 0 and y = 0 
- If there are no rabbits or wolves, the populations are not 

going to increase

The other solution is:

- So, the equilibrium populations consist of 80 wolves and 1000 
rabbits.

Example 1 a

0.08 0.0280 1000
0.001 0.00002

W R= = = =



www.usj.es

This means that 1000 rabbits are just enough to support a 
constant wolf population of 80. 

• The wolves aren’t too many—which would result in fewer 
rabbits. 

• They aren’t too few—which would result in more rabbits.

Example 1 a
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We use the Chain Rule to eliminate t :

Example 1 b

0.02 0.00002
0.08 0.001

dW
dW W RWdt

dRdR R RW
dt

− +
= =

−
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Relationship between real data and the 
Lotka-Volterra equation

For instance, the Hudson’s Bay Company, which started trading in animal furs in 
Canada in 1670, has kept records that date back to 
the 1840s.  

The graphs show the number of pelts of the snowshoe hare and its predator, the 
Canada lynx, traded over a 90-year period.
You can see that the coupled oscillations in the hare and lynx populations 
predicted by the Lotka-Volterra model do actually occur.
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Relationship between real data and the 
Lotka-Volterra equation

For instance, the Hudson’s Bay Company, which started trading in animal furs in 
Canada in 1670, has kept records that date back to 
the 1840s.  

The graphs show the number of pelts of the snowshoe hare and its predator, the 
Canada lynx, traded over a 90-year period.
You can see that the coupled oscillations in the hare and lynx populations 
predicted by the Lotka-Volterra model do actually occur.

The period of the 
cycles is 10 years. 
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Simulating populations

# -*- coding: utf-8 -*-

import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
import numpy as np
import scipy.integrate
import sys

def derivative(X, t, alpha, beta, delta, gamma):
x, y = X
dotx = ((alpha*x) - (x*delta * y))
doty = (gamma * x *y) - (beta *y  )
return np.array([dotx, doty])

def main():
values = (sys.argv)
alpha = (values[1])  #the growth rate of the prey
if "-" in alpha:

alpha=alpha.replace("-","")
if alpha.upper() in ["H","HELP"]:

print("""dx/dt = αx -δxy, dy/dt = -βy + γxy
python lotka-volterra.py alpha Beta delta gamma x0 y0
example data    α = 0.8, δ = 0.01, β= 0.2, γ = 0.002 x0=100 y0=8 tmax=30""")
quit()

else:
alpha=float(alpha)

beta = float(values[2]) #the death rate of the predator
delta = float(values[3])  #mortality rate due to predators
gamma = float(values[4])  #mortality rate due to interaction pray predator
x0 = float(values[5])  #original prey population
y0 = float(values[6])  #original predator population
tmax = float(values[7]) #Time in  years for analisis
print(values)
Nt = tmax*100
t = np.linspace(0.,tmax, Nt)
X0 = [x0, y0]
res = scipy.integrate.odeint(derivative, X0, t, args = (alpha, beta, delta, gamma))
x, y = res.T
plt.figure()
plt.grid()
plt.title("odeint method")
plt.plot(t, x, 'xb', label = 'Deer')
plt.plot(t, y, '+r', label = "Wolves")
plt.xlabel('Time t, [years]')
plt.ylabel('Population')
plt.legend()

plt.savefig('Lotka-volterra.png')
if __name__ == '__main__':

main()
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