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Introduction
Linear regression models are based on how two quantitative variables, one explanatory and one response,
are related to each other. They are an alternative study to those carried out in the previous units to try
to create a model of how two variables are involved in a biological phenomenon. The idea of a model is
to predict unknown values of the response variable as a function of the values of the explanatory variable,
henceforth referred to as prediction.

However, before calculate the regression model, it is essential to prove that two variables are related, which
can be assess though the value of covariance.

Sxy =
∑

(xi − x)(yi − y)
n

If the value of Sxy is distinct to 0, there is a correlation between x and y variables and then we may proceed
adressing if the relation follows a linear model.

Linear regression model
The formula for a function to draw a straight line has the form:

y = bx + a

Where b is the slope and a is the independent term or intercept. The predictor variable is x and the response
is y. In the real world finding a relationship between variables that results in a perfect straight line is almost
impossible. But simple linear regression attempts to fit the data we have for several variables to a line that
best represents the biological phenomenon being analysed.
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The slope establishes the linear relationship that exists between the response variable and the predictor,
and is interpreted as the estimator of change in the response variable associated with a one-unit increase in
the predictor variable, which would be expected to increase on average as we move from unit to unit in the
predictor variable.

In order to fit a linear model to a data set, it must be assumed that the data have certain characteristics:

1. For a given value of x, the true value of the mean value of y depends on x. This means that in a linear
regression what is represented on the line are the mean values of y for a value of x, i.e. not exact (µy|x).

2. Each observation in the y data set is independent, i.e. yi ̸= yj .
3. Based on the above, the linear equation obtained in a linear regression is:

µy|x = β1x + β0

where β1 is the slope and β0 the ordinate at the origin.

4. The variance of yi is constant, i.e. it has the property of homoscedasticity.

5. The distribution of response values, andi are normal.

The formula in point 3 talks about the average value that the response variable yi can have for a given x.
However, in our data set what we will have is an observed yi value. Thus, the difference between the mean
value provided by the linear regression (µy|x) and the observed value in the data set (yi ) is the error or
residual or residual error.

Thus, the value of yi observed in the data set corresponds to:

yi = β1x + β0 + ϵi

The residual error is thus the difference between the values estimated by the line and the observed values in
the dataset.

ϵi = yi − µy|x

In linear regression the sum of all these squared differences gives an idea of the variation that exists between
the model and the actual data provided by the data set:

RSS =
n∑
i

ϵ2
i

This is called the Sum of Squares of Residues (RSS).

If it is decided to make a linear fit by minimising the value of RSS as much as possible, the least-squares
method is being used to make the fit, and the line obtained is called Least-squares regression line.

In this adjustment, the theoretical values ofβ1 and β0 , must be estimated, therefore their corresponding
non-Greek letters are used. The calculation based on the least squares method of each estimator is performed
as follows:

b1 =
∑

(xi − x)(yi − y)∑
(xi − x)2

b0 = y − b1 · x

The R function that performs this calculation is lm and the parameters must be passed to it in the formula
format: y ~ x.

Example: You have the following expression data for two genes:
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genes <- data.frame(gene1=c(-1.06,-0.81,-0.48,-0.42,-0.30,-0.35,-0.31,-0.18,-0.20,-0.11
,-0.09,0.16,0.45,0.53,0.67,0.80,0.87,0.92),

gene2=c(-1.08,-1.02,-0.39,-0.48,-0.58,-0.24,-0.05,-0.33,0.51,-0.53,-0.47
,0.10,0.39,0.11,0.52,0.34,1.08,1.21))

genes

## gene1 gene2
## 1 -1.06 -1.08
## 2 -0.81 -1.02
## 3 -0.48 -0.39
## 4 -0.42 -0.48
## 5 -0.30 -0.58
## 6 -0.35 -0.24
## 7 -0.31 -0.05
## 8 -0.18 -0.33
## 9 -0.20 0.51
## 10 -0.11 -0.53
## 11 -0.09 -0.47
## 12 0.16 0.10
## 13 0.45 0.39
## 14 0.53 0.11
## 15 0.67 0.52
## 16 0.80 0.34
## 17 0.87 1.08
## 18 0.92 1.21

We plot the values of both variables against each other
plot(x = genes$gene1,genes$gene2,main="Gene2 vs Gene1",pch=16,

xlab="Gene1", ylab="Gene2")

The aim is to find a line that is valid for predicting the values of gene 2 based on the observations of gene 1.
Calculating the values of b1 and b0 manually:

b1 =
∑

(xi − x)(yi − y)∑
(xi − x)2

gene1.mean <- mean(genes$gene1)
gene2.mean <- mean(genes$gene2)
b1 <- (sum((genes$gene1-gene1.mean)*(genes$gene2-gene2.mean)))/(sum((genes$gene1-gene1.mean)ˆ2))
b1

## [1] 0.9707003

b0 = y − b1 · x

b0 <- gene2.mean - b1*gene1.mean
b0

## [1] -0.05540906

With this formula we would obtain the equation of the least squares regression line. By substituting observed
values for xi we would obtain the expected means for each y according to x.

µy|x = 0.9707x − 0.0554
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Figure 1: Gene2 vs Gene1

Then, expected values are calculated:
gene2.expected <- b1*genes$gene1 + b0
genes$gene2expected <- gene2.expected
genes[,2:3]

## gene2 gene2expected
## 1 -1.08 -1.08435135
## 2 -1.02 -0.84167628
## 3 -0.39 -0.52134519
## 4 -0.48 -0.46310317
## 5 -0.58 -0.34661914
## 6 -0.24 -0.39515415
## 7 -0.05 -0.35632614
## 8 -0.33 -0.23013511
## 9 0.51 -0.24954911
## 10 -0.53 -0.16218609
## 11 -0.47 -0.14277208
## 12 0.10 0.09990299
## 13 0.39 0.38140607
## 14 0.11 0.45906209
## 15 0.52 0.59496013
## 16 0.34 0.72115116
## 17 1.08 0.78910018
## 18 1.21 0.83763519

It can be seen how some values are close. To determine what residual error we are making in predicting the
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values of each yi with the line obtained it is necessary to calculate the residual error:

ϵi = yi − µy|x

residues <- genes$gene2-genes$gene2expected
genes$residues <- residues
genes[2:4]

## gene2 gene2expected residues
## 1 -1.08 -1.08435135 4.351347e-03
## 2 -1.02 -0.84167628 -1.783237e-01
## 3 -0.39 -0.52134519 1.313452e-01
## 4 -0.48 -0.46310317 -1.689683e-02
## 5 -0.58 -0.34661914 -2.333809e-01
## 6 -0.24 -0.39515415 1.551542e-01
## 7 -0.05 -0.35632614 3.063261e-01
## 8 -0.33 -0.23013511 -9.986489e-02
## 9 0.51 -0.24954911 7.595491e-01
## 10 -0.53 -0.16218609 -3.678139e-01
## 11 -0.47 -0.14277208 -3.272279e-01
## 12 0.10 0.09990299 9.701311e-05
## 13 0.39 0.38140607 8.593934e-03
## 14 0.11 0.45906209 -3.490621e-01
## 15 0.52 0.59496013 -7.496013e-02
## 16 0.34 0.72115116 -3.811512e-01
## 17 1.08 0.78910018 2.908998e-01
## 18 1.21 0.83763519 3.723648e-01

Therefore to calculate y1 would be obtained by means of:

y1 = 0.9707x − 0.0554 + 4.35ů10−3

The sum of squared residuals, RSS, is:
RSS <- sum((genes$residues)ˆ2)
RSS

## [1] 1.547075

With the R function, the data for the slope and the intercept are obtained with the least squares method,
but not for the residuals.
lm(genes$gene2 ~ genes$gene1)

##
## Call:
## lm(formula = genes$gene2 ~ genes$gene1)
##
## Coefficients:
## (Intercept) genes$gene1
## -0.05541 0.97070

The representation of this line will be achieved by adding a lines function to the above graph.
plot(x = genes$gene1,genes$gene2,main="Gene2 vs Gene1",pch=16,

xlab="Gene1", ylab="Gene2")
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lines(genes$gene1,genes$gene2expected, col="blue") # Linear regression
segments(genes$gene1,genes$gene2expected,genes$gene1,genes$gene2,lty=2) # Vertical line
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Figure 2: RSS adjuts

Goodness of fit
Goodness-of-fit refers to how well the regression model fits the observed data, and is represented by the
R-squared value, R2. The RSS (the sum of squared residuals) quantifies the discrepancy between the observed
data and the regression line that represents them; the greater the RSS obtained, the greater the difference
between what is expected by the model and what is observed. This value could be identified as the random
variation that the response variable has to the model, which would be nothing more than the lack of fit to
the model.

In contrast to this value would be the R2: how well our regression model represents the observed data and
explains the variation in the response variable. Its value is between 0 and 1, the larger the better the model
fits the data. R2 is calculated as 1 minus the ratio between the total variation of the response variable and
the random variation of the response variable:

R2 = 1 −
∑n

i (yi − µy|x)2∑n
i (yi − y)2

The denominator is also known as the Total Sum of Squares, TSS, and represents how much each observed
value deviates from the mean obtained in the data set with those values. So R2 could also be expressed as:

R2 = 1 − RSS

TSS
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The ratio
RSS/TSS

can be interpreted as the percentage of the variation that is not explained by the linear regression model. R2

is also the result of the square of linear regression coefficient r:

r =
∑N

i=1(Xi − X)(Yi − Y )
(n − 1)SXSY

Either this coefficient or R2 determine the existance of a linear correlation between two variables when its
value is significantly distinct to 0. This means that at least one coefficient of the linear model is not null:

{
H0 : βi = 0 ∀i
H1 : βi ̸= 0 at least for one i

Example: If we analyse the previous gene data:
num <- sum((genes$gene1 - gene1.mean)*(genes$gene2 - gene2.mean))
den <- (nrow(genes)-1)*sd(genes$gene1)*sd(genes$gene2)

correlation <- num/den
correlation <- correlationˆ2
correlation

## [1] 0.7790301

We may perform the contrast applyint the function summary to lm object:
summary(lm(genes$gene2 ~ genes$gene1))

##
## Call:
## lm(formula = genes$gene2 ~ genes$gene1)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.3811 -0.2196 -0.0084 0.1492 0.7595
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.05541 0.07330 -0.756 0.461
## genes$gene1 0.97070 0.12925 7.511 1.25e-06 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.311 on 16 degrees of freedom
## Multiple R-squared: 0.779, Adjusted R-squared: 0.7652
## F-statistic: 56.41 on 1 and 16 DF, p-value: 1.246e-06

This is known as the omnibus test and performs an overall assessment of the model, to determine whether
or not it is appropriate for modelling the data set provided. Its statistic is F , which gives rise to a probability
value, p-value, which if it is less than 0.05 will indicate that the model is indeed appropriate for our data.

Clustering methods
In bioinformatics we can find a series of explanatory variables (which can be quantitative or categorical)
that can predict the values of a response variable, which are unknown. This is a model. If the model uses

7



Hypothesis Testing

the available data to predict new values, then it is a supervised learning method. Example of a supervised
method: linear regression. Unsupervised learning methods attempt to identify the underlying data structure
of a given set, without focusing on a specific variable.

Clustering is a very important class of unsupervised methods, used to identify subgroups within a population.
For example, if we had a quantitative variable and we had to find out into how many categories it could be
classified according to the variable’s data, clustering would help us to do this classification. Classification
is based on the notion of the degree of similarity or dissimilarity of the data, which is quantifiable with a
measure of distance.

Distance squared

One of the most commonly used distances, for a random variable X for its observation i and its observation j,

dij = (xi − xj)2

If we have in the dataset more than one random variable, for example p random variables (X1,. . . Xp) the
distance between each pair of observations for the different variables corresponds to:

dij = (xi1 − xj1)2 + ... + (xip − xjp)2

This measure of difference between observed values is the squared Euclidean distance.The R dist function
allows to calculate Euclidean distances between data.

K-Means algorithm
It is the simplest algorithm that uses the Euclidean distance squared to quantify how different the data is. It
is an iterative algorithm, in which we must first indicate the number of groups into which we believe the
population is divided, which corresponds to the value of K. The objective will be to try to group the n
observations into one of the K groups according to how different these observations are, i.e. the distance.
With each iteration the observations are better distributed in the groups or clusters.

The steps to be followed to carry out a cluster classification by the K-means algorithm:

1. All observations are randomly divided into K groups or clusters.
2. Define a centre or centroid for each cluster, an imaginary observation that represents the mean of all

observations in that cluster.
3. The Euclidean distance squared from each observation to all the centroids of the K groups is measured.
4. Each observation is assigned to the group whose Euclidean distance to the centre was the smallest.
5. Return to point 2, recalculate the centres and repeat this process until the values of the centres stop

changing with each iteration.

As an example, let us use the dataset of the Protein.txt file containing data on protein consumption
from different origins in different European countries, with the aim of classifying them according to the
consumption of these proteins.
proteins <- read.table(file="Protein.txt",sep = " ",header = TRUE)

We will start with 3 clusters based on countries that consume the most red meat and fish
x <- proteins[,c("RedMeat","Fish")]
#x <- scale(x)
head(x,10)

## RedMeat Fish
## 1 10.1 0.2
## 2 8.9 2.1
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## 3 13.5 4.5
## 4 7.8 1.2
## 5 9.7 2.0
## 6 10.6 9.9
## 7 8.4 5.4
## 8 9.5 5.8
## 9 18.0 5.7
## 10 10.2 5.9

The R function that creates the cluster by the K-means algorithm is kmeans.
clus <- kmeans(x, centers = 3)

The object that this function creates is a kmeans. Then, using it is possible to find out the position of each
country and which are the centroid values.
clus$cluster

## [1] 1 1 2 1 1 3 3 3 2 3 1 2 1 1 3 1 3 1 3 3 2 2 1 2 1
clus$centers

## RedMeat Fish
## 1 7.918182 1.754545
## 2 14.550000 3.733333
## 3 8.912500 8.175000

It is usefull to add a new column to the dataset with the information of the cluster that occupies.
proteins$clusterId <- clus$cluster

The representation of data around centroids can be visualized as follows:
plot(proteins$Fish, proteins$RedMeat, type = "n", xlab = "Fish",

ylab = "Red Meat", xlim = c(0, 15), ylim = c(0, 20))

text(proteins$Fish, proteins$RedMeat, labels = proteins$Country,col=proteins$clusterId)
points(x=clus$centers[,2],y=clus$centers[,1], pch=c(1,2,3), col=c(1,2,3),cex=2.5)
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For the first group of the cluster, in black, there are 11 countries, for the second group in red there are 6, and
finally for the third group there are 8. You can see how they are distributed around the centroids, which are
a circle, a triangle and a cross, respectively.

The first cluster contains countries that have relatively low fish and red meat consumption. The second
cluster contains countries whose meat consumption is similar to that of the first group, but has higher fish
consumption. And finally, the third cluster includes countries whose red meat consumption is higher than
the other two while fish consumption remains lower than in the second cluster.

This algorithm has two limitations:

• all observations are assigned to groups and once they are in the group, they are not considered different
from each other, but belong to that group and that’s it.

• it is necessary to specify the number of clusters a priori. The choice should not be trivial, as it has a
substantial impact on the results.

Hierarchical clustering
This is an alternative method to avoid the limitations that the K-means algorithm provides. The result is a
tree or dendogram. The root of the tree contains all observations, and is the highest level. The leaves, on
the other hand, are the lowest level and are unique to each observation.

There are two algorithms: agglomerative and divisive.

Agglomerative algorithm

The way to build the tree is from the bottom up.

• At the beginning, there are as many different clusters as there are observations.
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• The next step is to converge two clusters with the smallest degree of difference (smallest distance).

• The following clusters converge with the next smallest degree of difference.

• This process is continued until only one cluster is present, i.e. the root of the tree is reached.

This algorithm is the most common and has three different methods of determining the distance between two
clusters:

1. Single linkage: the cluster uses the minimum distance, di j, among all possible pairs as the distance
between clusters.

2. Complete linkage: the cluster uses the maximum distance, di j, between all possible pairs in the cluster
as the distance between clusters.

3. Average linkage: the cluster uses the average distance calculated between all points of the two clusters.

Figure 3: Types of linkage

In R, the hclust function is the one used to obtain the values to be represented in the dendogram. It
receives as an argument an object of the class dist, which is the result of calculating the distance between
the observations for the chosen variables. The resulting object is of class hclust.
# Using previous protein dataset, we determine Euclidean distance
d <- dist(x)

# This method allows different modes: single, complete, average, among others.
clus.h <- hclust(d = d,method = "complete")

# Dendrogram
plot(clus.h, main="Dendogram",labels = proteins$Country,xlab="Contruies")
abline(h=12,lty="dashed")
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The horizontal line shows where the dendogram would be cut to create 3 clusters. This algorithm is very
effective in giving an idea of how many different clusters I want to group my data into with the K-means
algorithm.
plot(clus.h, main="Dendogram",labels = proteins$Country,xlab="Countries")
rect.hclust(clus.h, k =3)
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With the rect.hclust function it is possible to obtain which data set belongs to which cluster. This
information can be added to the dataset using the cutree function, and determine whether it matches that
previously obtained by the K-means algorithm.
clus.h.id <- cutree(clus.h, k = 3)

proteins$hc <- clus.h.id

Divisive Algorithm

The way to build the tree is from the top down.

• At the beginning there is only one cluster, where all observations are grouped together.

• The next step is to separate into two clusters with the greatest degree of difference (greatest distance).

• The following clusters are then separated with the next highest degree of difference.

• This process is continued until there are only as many clusters as observations, i.e. the branches of the
trees are reached.

Exercises
1. The Indometh dataset, which is included in the R dataset package, collects data from 6 individuals

who were intravenously injected with the drug indomethacin. The dataset includes the time (hours)
after injection when the blood samples were collected and the plasma concentration obtained. Answer
the following questions about the experiment:

a) Plot the time vs. concentration data. Is it a linear relationship?
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b) Apply a logarithmic transformation to the data and re-plot. Is there now a linear relationship?

c) Find the linear regression line for the data transformed with the lm function. Interpret the result.

d) Add the linear regression line found to the previous graph.

e) How good is the fit of the data? Manually find the value of R2.

f) Indicate if the linear regression model found is adequate to determine the time needed to wait to
draw blood as a function of the concentration.

2. For this exercise is necessary to install and load the package ISLR:

install.packages("ISLR")
library(ISLR)

The NCI60 object contains data on the expression levels of 6830 genes from 64 lines of different cancers.
str(NCI60)

## List of 2
## $ data: num [1:64, 1:6830] 0.3 0.68 0.94 0.28 0.485 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : chr [1:64] "V1" "V2" "V3" "V4" ...
## .. ..$ : chr [1:6830] "1" "2" "3" "4" ...
## $ labs: chr [1:64] "CNS" "CNS" "CNS" "RENAL" ...

On one hand, within data, there are expression data collected on the 64-sample microarray (rows) for 6830
genes (columns). On the other hand, in labs are the names of the cancer types.
data.nci <- NCI60$data
labels.nci <- NCI60$labs

The goal of the work is to see how the microarray expression data collected in ‘data.nci is clustered. In this
way, it could be observed if there are genes that show alteration in their expression in a common way to the
cancers that are collected in tags.nci. To do so, generate a markdown report showing how you follow the
clustering analysis by doing the following steps:

1. Transform all the expression data from the microarrays so that they are in the same order of magnitude.

2. Visualize how many of the samples there are for each cancer type using a function that displays in a
cross table the count within each cancer category in the labels.nci variable.

3. Calculate the Euclidean distance between all expression values.

4. Perform clustering using hierarchical clustering with the agglomerative algorithm and complete linkage
as the method.

5. Represent the obtained dendogram using the cancer type labels.
Note: if the letters are very large, use the parameter cex=0.5.

6. Group the results of the above dendogram into 4 groups.

7. Obtain to which of the clusters obtained above each of the samples belongs. Create a dataset with a
column containing the cluster information and another column containing the type of cancer.

8. Explain the results you observe.
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