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Introduction to hypothesis testing
Hypothesis testing is another very important part of statistical inference. The previous unit focused on
estimating parameters: finding an expected value of a parameter that was unknown in a population. But
hypothesis testing is about deciding whether the value we have found or some other value is the true value. To
do this, two or more hypotheses are formulated and, by means of various statistical tests, with the information
that comes from the population sample, it is decided which of the hypotheses is accepted.

In this unit the hypotheses to be put forward will be:

• Null hypothesis, H0 , which tries to reflect that the observed phenomenon is the result of chance and
that “there is nothing interesting to study.”

• Alternative hypothesis, H1 , which is the hypothesis that is put forward and that you want to prove.
There are three types of alternative hypotheses:

– population parameter > hypothesised value (estimated value). One tail on the right.

– population parameter < hypothesised value (estimated value). One tail on the left.
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Hypothesis Testing

– population parameter ̸= hypothesised value (estimated value). Two-tailed.

Hypothesis evaluation procedure
The most common approach is to focus on the null hypothesis, which is always simpler than the alternative,
and decide whether to accept or reject it. This is done by examining the evidence provided by the observed
data against the null hypothesis, if the evidence is large, H0 is rejected. The evidence sought has two
components:

• Apply a statistical test (t-Student, χ2 , F, etc.) on the sample.
• Evaluate the possible values obtained from the test to determine which values lead to accepting the

null hypothesis and which to rejecting it.

Given some aleatory event, it is possible to determine the probability of that event to occur using probability
distribution functions. In this way, we can calculate if the event is very likely to occur or if it is very rare,
and the ocurrance of that event is not due to aleatory facts.

If we think of the distribution of the sample statistic (t-Student, χ2, F), the calculated statistic (mean or
variance, respectively) will be located somewhere on the graph. If its location is at some extreme of the
graph, where the probability states it is very unlikely to occur, the null hypothesis will be rejected. But it
is necessary to establish the criterion that indicates up to here the value of the statistic validates the null
hypothesis and from here, it rejects it. The criterion is the same α used to establish confidence intervals, the
level of error, which usually takes the value of 0.05.

Actually, there are two types of errors when assessing with a statistical test whether we accept or reject the
null hypothesis:

• Type I error: the null hypothesis is rejected when it is true.
• Type II error: the null hypothesis is accepted when in fact it should have been rejected.

The probability of committing the type I error is α and the probability of committing the type II error is β.
The fact that α is used to determine whether the value of the statistic is too extreme for the null hypothesis to
be accepted is because the intention is not to reject H0 unless the evidence against it is very large, i.e. making
a type II error is tolerable, as the repercussions of making such an error are not as serious as making a type
I error. The value of β refers to the power of the test.(1 - β) corresponds to the probability that the null
hypothesis is rejected as false and, therefore, the alternative is accepted as true, i.e. the probability that the
statistical test detects the true positive. And although it is desired that β be as small as possible and α as
small as possible, these two errors are complementary, so that what is prioritised is that α be small and 1 - β
large.

Evaluation of hypotheses for the mean of the population: calculate the p-value
Statistics are informative values calculated from the observed data in a sample. Since these statistics are
used to evaluate hypotheses that are put forward, we will refer to them as test statistics. Thus, to evaluate
hypotheses about the population mean, the sample mean, X, will be used as the test statistic.

A statistical test will be considered as such if its distribution is known (or approximate) for the null hypothesis.
We are going to load the body temperature data (ºF) in a dataset from the BodyTemperature.txt file.
bodytemperature <- read.table(file="BodyTemperature.txt",header = TRUE)
temperature <- bodytemperature$Temperature

The hypotheses to establish could be set as:

{
H0 : µ = 98.6
H1 : µ < 98.6

To begin with, let us establish that we know the population variance, which is σ = 1, and that 25 temperatures
are chosen at random from the dataset.
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set.seed(123)
temperature.smpl <- sample(temperature, size=25)

We may assume that the sample distribution can be state using the normal distribution function for the
mean,X:

X ∼ N(µ, σ2/n) → X ∼ N(µ, 1/25)
Let us now assume that the null hypothesis is true and that the population mean is µ = 98.6. Let us plot the
distribution of the values that X can take:
par(mfrow=c(1,2))
x <- seq(97.85, 99.3, length.out = 10000)

probX <- dnorm(x,mean=98.6,sd=0.2)

plot(x, probX, type="l", xlab="mean"
,main="Temperature mean"
,ylab="Density", xlim=c(97.85,99.3))

abline(h=0, col="gray")
segments(x0 = 98.4, y0 = 0, y1 = 1.2, x1 = 98.4)

z <- (x-98.6)/(1/sqrt(25))
probZ <- dnorm(z,mean=0,sd=1)

plot(z, probZ, type="l", xlab="z"
,main="Z value"
,ylab="Density", xlim=c(-4, 4))

abline(h=0, col="gray")
segments(x0 = -1, y0 = 0, y1 = 0.24, x1 = -1)
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Figure 1: Null hypothesis

These graphs show the distribution of temperatures for the null hypothesis, and the corresponding value of
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the calculated z-statistic. In this case, the population deviation is known and is indicated in both graphs by
a vertical line. This is known as the lower probability tail, and shows those temperature values that have a
probability equal to or less than 98.4 of occurring. More extreme values will be found thereafter.

The probability values corresponding to these extreme values are called the significance level for the test
statistic and are represented as p-values.

p = P (X ≤ x|H0)

The value of p is a probability conditional on H0 , since it is assumed to be true. The alternative hypothesis,
H1 , states that the value of the mean will be below µ.
temperature.mean <- mean(temperature.smpl)
temperature.mean

## [1] 98.368

Therefore the p-value is calculated as:

p = P (X ≤ 98.37)

As this is a normal distribution, this value can be calculated with pnorm

pnorm(temperature.mean,mean = 98.6, sd = 0.2)

## [1] 0.1230244

Interpretation of the p-value

The p-value is the conditional probability of the extreme values of a statistical test assuming that the null
hypothesis is true. As the p-value becomes larger it means that the value of the mean of the alternative
hypothesis is not so far away from the null hypothesis, but closer to it, fitting the generated distribution.

For the p-value to help decide whether to accept or reject the null hypothesis, it is necessary to establish
a threshold probability value at which the null hypothesis no longer agrees with the observed data. This
threshold is called the significance level or test size. Typical significance levels are: 0.01, 0.05 or 0.1. This
threshold corresponds to α, and if values smaller than this are obtained, the data are said to provide
statistically significant evidence against H0 .

When significant differences are found between the value of the analysed sample statistic and that of the
population, it is assumed that this difference is very unlikely to be due to chance alone, and that the sample
is actually different from the proposed null hypothesis. In the case of small sample sizes, it may be the case
that we reject H0 but it is true, leading to an inconclusive result, as it is not really known which of the
two scenarios we may be in. In case more than 2 hypotheses are tested at the same time, more advanced
statistical inference methods are usually needed.

Normality test
As it was mentioned previously, depending on the statistical distribution of sample data, the type of hypothesis
test will vary. Many hypothesis testing approaches are based on the fact that the population from which the
samples come follow a normal distribution. To confirm these assumptions, the Shapiro-Wilk test should be
used. The statistic for this test is W , which would be calculated:

W =
(
∑n

i=1 aiXi)2∑n
i=1 (Xi − X)2
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Where ai is an expression calculated from the median and the covariance matrix. The value of W is between
0 and 1. In the normality, the following hypothesis test is performed:

{
H0 : Normally distributed population
H1 : Not normally distributed population

The higher the value of W the lower the p-value, if the p-value found is lower than the established significance
level α, then the null hypothesis that the population follows a normal distribution is rejected, and the tests
explained above cannot be used to test their hypotheses.If a given variable follows a normal distribution, then
it is recommended to use a parametric tests to complete the hypothesis testing analysis. On the contrary,
non parametric tests are preferred. In R, the functions to perform the normality test are:

• shapiro.test, which receives as argument the vector with the sample.
• Realisation of a Q-Q plot. It is called Q-Q, because it represents the quantile. By plotting the quantiles

of two distributions you can compare them and determine if they are the same.

Example: From the BodyTemperature dataset used before, apply the Shapiro-Wilk normality
test and a Q-Q plot for the variable Temperature.
shapiro.test(bodytemperature$Temperature)

##
## Shapiro-Wilk normality test
##
## data: bodytemperature$Temperature
## W = 0.98171, p-value = 0.1803

The result of the normality test is that in the case of Temperature, the sample, and therefore the population
follow a normal distribution since the p-value is greater than 0.05 (significance level). It is possible to check
this graphically assessing through a Q-Q plot if the distribution of the variable fits the normal. This is
directly done with the R function qqnorm.
qqnorm(bodytemperature$Temperature)
qqline(bodytemperature$Temperature,lwd=2,col="green")

It can be clearly seen how the Temperature variable fits well to the trend line of the normal distribution
(green).

Parametric tests
Normal distribution, α known, large samples
The statistical test to be used will be z, the distribution of z is shown to be a standardized normal distribution.
We will have two values of z: * Z, which will be the one calculated for the null hypothesis (theoretical) * z
for the alternative hypothesis.

The formula for z will be:

p = P (X − µ

σ
)

Where X is the mean of the sample, µ is the mean of the population and σ the standard deviation.

The hypotheses in this situation can be established as follows:
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Figure 2: QQPlot


H0 : µ = µ0
H1 : µ < µ0
H1 : µ > µ0
H1 : µ ̸= µ0

In the cases of H1 : µ < µ0 and H1 : µ > µ0 the contrasts are called one-tailed, since only one direction
of the graph is observed. Regarding continuous variables ≤ or < are equivalent. For the third case of H1,
the contrast tests are called two-tailed, since the extreme values of the sample mean can be found in both
directions of the graph. In addition, the significance level must be divided by two. To know if the null
hypothesis is rejected, we may use two distinct criteria: comparing the values of z and Zα or using p-value.
Regarding this last criteria, if p < α the null hypothesis is rejected. According to the others:

• For H1 : µ < µ0 null hypothesis is rejected if (negative z value) z ≤ Zα or z < Zα

• For H1 : µ > µ0 null hypothesis is rejected if z ≥ Zα or z > Z1−α.
• For H1 : µ ̸= µ0 null hypothesis is rejected if z ≤ Z α

2
(z valor negativo) or z ≥ Z1− α

2
.

Example: In the genomes of prokaryotes, genes are organised into operons. Genes within an
operon tend to have similar expression levels. An experiment is carried out to find the average
true expression of an operon. The average expression of an operon consisting of 34 genes is
found to be 0.20. In the literature, the mean expression is found to be 0.28 for that operon
when the population variance is 0.14. The significance level is set at α = 0.05. Is it a significant
difference that has been found in the experiment?

Assumptions:

• Population presents a normal distribution
• The variance is known
• Sample is large
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The hyphothesis test proposed:

{
H0 : µ = 0.28
H1 : µ ̸= 0.28

If the value of the mean coincides with 0.28, it will be accepted that the experiment agrees with the
bibliographic data. Otherwise, the expression found for the operon is different and therefore, it may be
another operon or different conditions than those proposed in the literature.

Applying the statistical test:

z = 0.2 − 0.28
√

0.14√
34

= −1.24

Let’s check the rejection criteria:

• According to z value: H1 : µ ̸= µ0 then z ≤ Z α
2

(negative z value) or z ≥ Z1− α
2

• According to p-value: p = 2P (Z ≥ |z|) = 2 · (1 − P (Z ≤ |z|))
Z <- qnorm(0.05/2)
round(Z,2)

## [1] -1.96

To reject the hypothesis z le Zα. Substituting the values: -1.24 > -1.959964, the null hypothesis is not
rejected. Using the second rejection criterion:
z <- abs((0.2 - 0.28)/(sqrt(0.14)/sqrt(34)))
1-pnorm(z)

## [1] 0.1062519

pvalue <- 2*(1-pnorm(z))

A value of 0.1062519 is obtained, which is > α (0.05). The null hypothesis is therefore accepted, in the same
way as for the first criterion.

Normal distribution, α unknown or small samples
The statistical test to be used will be the t-test. This statistic follows a t-Student distribution, which is
similar to a standardised normal distribution, whose degrees of freedom, v , will correspond to n − 1 (n
corresponding to the sample size). The hypotheses to contrast are establised the same way as in the previous
section with z, however the statistic here is t and its expression is as follows:

t = X − µ
σ√
n

In this situation, depending if the contrast is one-tail or two-tail we will find different rejection criteria:

• For H1 : µ < µ0 null hypothesis is rejected if t ≤ Tα,v or t < Tα,v.
• For H1 : µ > µ0 null hypothesis is rejected if t ≥ Tα,v or t > T1−α,v.
• For H1 : µ ̸= µ0 null hypothesis is rejected if t ≤ T α

2
or t ≥ T1− α

2

Example: In DNA, the ratio of G and C must be the same, which is why it is often referred to
as the G+C ratio. A sample of 16 DNAs is taken from that species, and it is found that the
standard deviation of the sample is 15 and the number of G+C 310. The significance level is
set at α = 0.05. Does the result agree with the hypothesis that it is greater than 300?

Assumptions:
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• Population presents a normal distribution
• The variance is known
• Sample is large

The hypothesis test proposed:

{
H0 : µ = 300
H1 : µ ≥ 300

Applying the statistical test:
t = 310 − 300

15√
16

= 2.67

For H1 : µ > µ0 null hypothesis is rejected if t ≥ Tα,v or t > T1−α,v.
Te <- qt(1-0.05/2,15)
round(Te,2)

## [1] 2.13

Substituting the values: 2.67 > 2.13, therefore the null hypothesis is rejected. Moreover, using the second
criteria p = 1 − P (T ≤ t), if we calculate the p-value:
t <- abs((31.71 - 30)/(8.01/sqrt(200)))
pvalue <- 1-pt(t,199)
pvalue

## [1] 0.001433573

A value of 0.001433573 is obtained, which is < α (0.05). Therefore, the null hypothesis is rejected, confirming
what was obtained with the first criterion.

The R, t.test function performs the hypothesis test only when a vector of sample values is passed as a
parameter.

Evaluation of hypotheses for population proportions
For a binary random variable, X, the possible values are 0 and 1. In hypothesis testing one is often interested
in assessing the proportion of the population that has had the outcome of interest, i.e. X = 1.

The hypothesis testing of two population proportions is equivalent to the comparison of means of a population
with a normal distribution, with known variance or large population size. Consequently, the statistical test to
be applied is z.The null hypothesis will therefore follow a normal distribution.

H0 ∼ N(µ0, µ0 · (1 − µ0))

Z = X − µ0√
µ0·(1−µ0)

n

For the alternative hypotheses, we may observe the same situations as previously, one or two-tail contrasts:

1. H1 : µ < µ0

2. H1 : µ > µ0

3. H1 : µ ̸= µ0
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Rejection criteria for null hypothesis are also the same as with the case of a continuous variable with z
distribution.

Example: Using the Melanoma dataset of the MASS package, we may say the null hypothesis
is that the mean number of ulcerations observed in patients is 0.5, i.e. 50% of patients have
ulcerations. As an alternative hypothesis, it is believed to be less than this proportion. Consider
a significance level of 0.05 and determine with hypothesis prevails.
require(MASS)

# We use data from column ulcer as cualitative variable.
Melanoma$ulcer <- as.factor(Melanoma$ulcer)

summary(Melanoma)

## time status sex age year
## Min. : 10 Min. :1.00 Min. :0.0000 Min. : 4.00 Min. :1962
## 1st Qu.:1525 1st Qu.:1.00 1st Qu.:0.0000 1st Qu.:42.00 1st Qu.:1968
## Median :2005 Median :2.00 Median :0.0000 Median :54.00 Median :1970
## Mean :2153 Mean :1.79 Mean :0.3854 Mean :52.46 Mean :1970
## 3rd Qu.:3042 3rd Qu.:2.00 3rd Qu.:1.0000 3rd Qu.:65.00 3rd Qu.:1972
## Max. :5565 Max. :3.00 Max. :1.0000 Max. :95.00 Max. :1977
## thickness ulcer
## Min. : 0.10 0:115
## 1st Qu.: 0.97 1: 90
## Median : 1.94
## Mean : 2.92
## 3rd Qu.: 3.56
## Max. :17.42

Let’s calculate p, the proportion of the sample that has ulcers on their melanoma.
p <- length(Melanoma$ulcer[Melanoma$ulcer == 1])/nrow(Melanoma)
p <- round(p,2)
p

## [1] 0.44

For this situation, the contrast is as follows:

{
H0 : µ = 50
H1 : µ < 50

Where z value would be:

z = 0.44 − 0.5√
(0.5·(1−0.5))

205

= −1.72

The first criteria states that for H1 : µ < 0.5 then we reject null hypothesis if z ≤ Z0.05

Z <- qnorm(0.05)
round(Z,2)

## [1] -1.64

We observe that it is satisfied, z le Z0.05 , since -1.72 < -1.64. Therefore, the null hypothesis is rejected.
Furthermore, according to the p-value criterion, we calculate p = P (Z ≤ z) and check if p < α.
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z <- (0.44 - 0.5)/sqrt((0.5*(1-0.5))/(205))
pvalue <- pnorm(z)
pvalue

## [1] 0.04288568

And we observe that 0.0428 < 0.05, then again null hypothesis is rejected.

Hytphotesis testing for comparing two populations
In this case the null hypothesis will respond to the following structure:

H0 = µ1 − µ2 = ∆

When comparing two mean values in the hypothesis, the tests to be performed are called two-sample tests,
whereas those seen so far would be one-sample tests. The two samples from which the test is carried out to
compare the means can be either independent (where samples come from distinct populations) or dependent
(where samples come from the same population and suppose observations in different time points).

The statistical values are calculated and analyses following an analogous approach as with one-sample tests.
Such that:

• Normal populations, known variances or large sample size where samples are independent use the
Z-statistic:

Z = X1 − X2 − ∆√
σ2

1
n1

+ σ2
2

n2

• Normal populations, unknown but equal variances or small sizes where samples are independent use
t-statistic:

t = X1 − X2 − ∆√
(n1−1)·S2

1 +(n2−1)·S2
2

n1+n2−2 ·
√

1
n1

+ 1
n2

• Normal populations, unknown and unequal variances or small sizes where samples are independent use
t-statistic modified:

t = X1 − X2 − ∆√
S2

1
n1

+ S2
2

n2

• Normal populations, unknown variance or small sizes where samples are dependent use t-statistic
modified:

t = d − ∆
sd√

n

Where d is the mean of the pairwise difference, n the number of pairs and sd the standard deviation of the
pairwise differences. The degrees of freedom correspond to v = n − 1. Actually, this test is like a one- sample
t-test.
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Non-parametric tests
In the study situation where a hypothesis test has to be performed and the populations do not follow a
normal distribution, the tests studied in the previous unit may not yield conclusive results when applied to
the samples. In this case, it will be necessary to apply the corresponding non-parametric test to perform the
test.

These tests assume little or nothing about the probability density obtained from the data. Therefore, they
are often used in cases where the samples are not normally distributed, or it is not known which distribution
they follow, or their sample sizes are very small. The analysis of non-numerical data would also fit here.

Chi-square test
This test is used to analyze categorical data. The organization of data for this analysis uses cross tables.
Cross tables are a simple and powerful method for aggregating count data into different categories (absolute
frequencies per category).

These tables consist of f rows and c columns. The simplest case would be a 2x2 table. The rows represent
different categories of one categorical variable and the columns represent different categories of another
categorical variable. What the contingency tables show is a “summary” of the categorical data. If we have
the categorical variable Genotype, with 3 possible categories, and another variable Body Mass Index with 5
categories:

• Cell 11 shall indicate the count of elements where the first genotype matches the first BMI category.

• Cell 12 shall indicate the count of items where the second genotype matches the first BMI category.

• Cell 21 shall indicate the count of items where the first genotype matches the second BMI category.

• . . .

Cross table (example)

— categoryA1 categoryA2 Total
categoryB1 a b a+b
categoryB2 c d c+d
Total a+c b+d n=a+b+c+d

a+c
n y b+d

n are marginal probabilities of categories A1 and A2, respectively. While a+b
n y c+d

n are marginal
probabilities for categories B1 and B2.

The analysis of contingency tables allows us to discriminate whether two categorical variables are related to
each other or not by performing the χ2 test on them. This test is based on a comparison of expected values
against observed ones obtained from the sample analysis.

χ2 =
∑

j

∑
i

(oij − eij)2

eij

with degrees of freedom, (f − 1) · (c − 1), where f is the number of rows and c the number of columns of the
contigency table, oij is the observed absolute frequency and eij as:

N ·
(

Fi

N
· Cj

N

)
Where Fi is the marginal probability of column i and Ci is the marginal probability of column j. The null
hypothesis is that the two variables are independent, while the alternative is that they are dependent.
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{
H0 : Independent variables
H1 : Dependent variables

If the p-value obtained with the chisq.test function is lower than the significance level α, the alternative
hypothesis that the variables analysed are related is accepted.

Fisher’s exact test
In case the expected values, calculated as described above, result in less than 5 in more than 20% of the cells,
Fisher’s exact test must be performed. Fisher’s exact test calculates every possible combination of the N
values in the table (it performs a permutation of all values in all existing categories, as long as the value of
the sum of the rows and columns remains the same). With the resulting values it creates a distribution in
which calculates how extreme the results are for the resulting contingency table.

Fisher’s test is usually used in scenarios where two variables with two categories each are compared.

The assumption is the same as for χ2 for independence.

{
H0 : Independet variables
H1 : Dependent variables

R is able to compute Fisher’s test through the function fisher.test which must receive a data matrix as
parameter.

Example: You want to relate the result of a genetic test carried out on gene A, which has two
alleles, to the presence of a disease. The results obtained are shown in the following table:

— Disease (+) Disease (-)
Allele1 45 122
Allele2 67 38

Using the χ2 test and Fisher’s exact test, determine whether there is a relationship between
alleles and disease. Consider 5% significance.

The hypothesis test would be the same for both tests:

{
H0 : gene and disease are unrelated
H1 : gene and disease are related

The matrix is created with the data as follows:
crosstab <- matrix(c(45,67,122,38),nrow = 2,ncol = 2,byrow = FALSE

,dimnames = list("Gene"=c("Allele1","Allele2"),"Disease"=c("Yes","No")))
crosstab

## Disease
## Gene Yes No
## Allele1 45 122
## Allele2 67 38

We then compute the marginal probabilities:

— Disease (+) Disease (-) Total
Allele1 45 122 167
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— Disease (+) Disease (-) Total
Allele2 67 38 105
Total 112 160 272

Test χ2

Expected values are calculated for each element in the table.

N ·
(

Fi

N
· Cj

N

)
e11 = 272 ·

( 167
272 · 112

272
)

= 67.76

e12 = 272 ·
( 167

272 · 160
272

)
= 98.23

e21 = 272 ·
( 105

272 · 112
272

)
= 43.23

e22 = 272 ·
( 105

272 · 160
272

)
= 61.76

The degrees of freedom are : (2 − 1) · (2 − 1) = 1

Finally, if we susbstitute the expression of χ2:

χ2 =
∑

j

∑
i

(oij − eij)2

eij
= (45 − 67.76)2

67.76 + (122 − 98.23)2

98.23 + (67 − 43.23)2

43.23 + (38 − 61.75)2

61.75 =

7.64 + 5.75 + 13.08 + 9.14 = 35.61

The expected values for χ2
1:

e11 <- (112/272)*(167/272)*272
e12 <- (160/272)*(167/272)*272
e21 <- (112/272)*(105/272)*272
e22 <- (160/272)*(105/272)*272

expected <- matrix(c(e11,e12,e21,e22),nrow = 2,byrow = FALSE)
observed <- matrix(c(45,122,67,38),nrow = 2,ncol = 2,byrow = FALSE)
expected

## [,1] [,2]
## [1,] 68.76471 43.23529
## [2,] 98.23529 61.76471

observed

## [,1] [,2]
## [1,] 45 67
## [2,] 122 38

diference <- expected - observed
diference.square <- diference * diference
diference.square.fraction <- diference.square / expected
diference.square.fraction

## [,1] [,2]
## [1,] 8.212952 13.062505
## [2,] 5.749067 9.143754

13



Hypothesis Testing

value.chi <- sum(diference.square.fraction)

# Calculate p-value:
pchisq(value.chi,df = 1,lower.tail = FALSE)

## [1] 1.80993e-09

As p-value < α, we then reject null hypothesis and we may conclude variables are related or dependent.

Also chisq.test function performs directly the operation.
chisq.test(crosstab)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: crosstab
## X-squared = 34.662, df = 1, p-value = 3.921e-09

For the Fisher’s test, the fisher.test function computes all possible contingency tables and calculates the
p-value.
fisher.test(crosstab)

##
## Fisher's Exact Test for Count Data
##
## data: crosstab
## p-value = 2.041e-09
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.1195958 0.3652159
## sample estimates:
## odds ratio
## 0.2105543

The p-value is in the same order of magnitude as that calculated for the original table as already advanced.
This value demonstrates that the null hypothesis that the variables are independent of each other must be
rejected, showing that they are related.

Non-parametric test for two samples
As we have seen above for parametric tests, it is sometimes necessary to compare random variables from two
different populations, X and Y, which may have different distribution functions.

Therefore, in two-sample parameter tests of two different populations, the null hypothesis to be tested will
be that the two populations to be studied follow the same distribution, while the alternative is that the
populations follow different distributions due to a shift at one point in the distribution θ.

{
H0 : FY (x) = FX(x)
H1 : FY (x) = FX(x + θ) where θ ̸= 0

So there will be m + n random variables (m from the X distribution and n from the Y distribution), which
can be arranged in

(
m+n

m

)
different ways.
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Wilcoxon test for independent samples

This statistical test would be the equivalent of the t.test for the comparison of means in normal populations.
In this test, the m and n values of both samples are combined to give N , in order from highest to lowest or
lowest to highest. Each random variable in the population X will have been assigned a rank (an ordered
position), Ri . The sum of Wilcoxon ranks will be:

W =
m∑

i=1
Ri − ni(ni + 1)

2

The null hypothesis will be that the location parameter, θ = 0, i.e. there has been no displacement and the
distribution functions of both populations are equal.

H0 : θ = 0

Alternative hypotheses, on the other hand, can be of various types, similar to parametric tests:

• H1 : θ > 0. Null hypothesis will be rejected if W ≥ wα.

• H1 : θ < 0. Null hypothesis will be rejected if W ≤ n(m + n + 1) − wα

• H1 : θ ̸= 0. Null hypothesis will be rejected if W ≥ w α
2

or W ≤ n(m + n + 1) − w α
2

.

Where, wα is the constant analogous to the significance value, α, in parametric tests.

Example: In a study they want to determine whether a drug can change the level of expression
in a certain number of genes in a cancer patient. The data are collected at two different
times, and θ represents the shifted value of the expressions after application of the drug.
Using a significance level of 0.05, determine whether there has been an effect, increasing gene
expression.

Gene Expression - t1 Expression - t2
g1 2670.171 1588.39
g2 2322.195 1377.756
g3 887.6829 638.3171
g4 915.1707 518.0488
g5 19858.68 4784.585
g6 14586.05 3644.561
g7 44259.61 25297.95
g8 34081.98 18560.51
g9 2381.634 1557.293

The contrast here:

{
H0 : θ = 0
H1 : θ > 0

Then, we join and sort the values in order to obtain, finally, the rank that occupies each value at the new
vector:
t1 <- c(2670.171,2322.195,887.6829,915.1707,19858.68,14586.05,44259.61,34081.98,2381.634)
t2 <- c(1588.39,1377.756,638.3171,518.0488,4784.585,3644.561,25297.95,18560.51,1557.293)

N <- c(t1,t2)
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# Order
sort(N)

## [1] 518.0488 638.3171 887.6829 915.1707 1377.7560 1557.2930
## [7] 1588.3900 2322.1950 2381.6340 2670.1710 3644.5610 4784.5850
## [13] 14586.0500 18560.5100 19858.6800 25297.9500 34081.9800 44259.6100

# Rank
t.rank <- rank(N)
t.rank

## [1] 10 8 3 4 15 13 18 17 9 7 5 2 1 12 11 16 14 6

After that, it is possible to determine the value of W in case of t1 and t2:
# Example: 9 first elements correspond to t1

W <- sum(t.rank[1:9]) - length(t1)*(length(t1)+1)/2
W

## [1] 52

Theoretical value of w0.05 for this two samples is computed using qwilcox.
w.alpha <- qwilcox(0.05,m = length(t1),n = length(t2))
w.alpha

## [1] 22

To reject the null hypothesis we follow the criterion W ≥ wα. It is therefore satisfied, as 52 is greater than
22, so the null hypothesis that there is no shift in gene expression is rejected. The application of the drug
affects the expression of the group of genes.

Using wilcox.test, the same conclusion is reached.
wilcox.test(t1,t2,paired = FALSE,alternative = "greater")

##
## Wilcoxon rank sum exact test
##
## data: t1 and t2
## W = 52, p-value = 0.1701
## alternative hypothesis: true location shift is greater than 0

Wilcoxon test for dependent samples

If the random variables are paired, they are dependent, and instead of creating a new random variable with
the observations of the two samples, the difference between the observations, which in reality come from the
same population but collected at different times, is made. This statistical test requires that the population
is symmetric about the median, so that the number of differences on either side of the median is the same,
i.e. the same number of Xi − M0 , where M0 is the median of the null hypothesis, the theoretical one. The
new variable to be included in the test is the previous difference denoted by Di, and the order rank of it will
be obtained. The statistic V , in this case will be calculated as:

V = min(W+, W−)

Where W+ and W− are the sum of the ranks with positive sign, and the sum of the ranks with negative
sign, respectively.
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The null hypothesis will be rejected under the criteria described above for the wα set. This test is less
powerful than the t-test (less likely to reject the null hypothesis when it is false), but because it is based on
the median it is more robust. If the sample size is greater than 25, the V statistic is normally distributed,
and a Z value would be calculated based on the value of V obtained.

Example: Considering the above problem from the perspective of paired samples.

The hypothesis testing to be carried out will be the same. In the table of expressions obtained, one more
column should be added, the column for the difference:

Gene Expression - t1 Expression t2 Difference
g1 2670.171 1588.39 1081.7810
g2 2322.195 1377.756 944.4390
g3 887.6829 638.3171 249.3656
g4 915.1707 518.0488 397.1219
g5 19858.68 4784.585 15074.1000
g6 14586.05 3644.561 10941.4900
g7 44259.61 25297.95 18961.6600
g8 34081.98 18560.51 15521.4700
g9 2381.634 1557.293 824.3410

We then assess the rank for the difference column
d <- t1-t2
d.ranked <- rank(d)
d.ranked

## [1] 5 4 1 2 7 6 9 8 3

There are no negative values, such that W− value is equal to 0 and W will be the minimun at the addition
W+.
V <- sum(d.ranked)
V

## [1] 45

Finally if we get the rejection criterion as W ≤ n(m + n + 1) − wα, we can conclude
length(t2)*(length(t2)+length(t1)+1)-w.alpha

## [1] 149

V is lower than 149, therefore the null hypothesis is rejected.

The difference found must be passed to the wilcox.test function, and µ=0, which represents that the
difference between each pair of observations is symmetrically distributed around 0.
wilcox.test(d,mu = 0)

##
## Wilcoxon signed rank exact test
##
## data: d
## V = 45, p-value = 0.003906
## alternative hypothesis: true location is not equal to 0

The result thus confirms that there are significant differences before and after applying the drug on the same
samples.
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Mann-Whitney test

Also known as the Mann-Whitney U test, it is equivalent to the Wilcoxon rank sum test, and is the alternative
par excellence to the t-test for independent samples, although the comparison made is

of medians and non-means. It requires homogeneity of variances to be applied. It is one of the most powerful
tests available to determine the differences between two samples. This test is based on the same premise as
the Wilcoxon rank sum test, including the particularity that by combining the data of the two variables into
a single variable and ordering, the aim is to determine the number of times a data item that was contained
in sample Y is ahead of a data item contained in sample X. The hypothesis testing is the same as in the
previous cases: the statistic U is the minimum sum of ranks found for each sample, W1 and W2

W1 =
m∑

i=1
Ri − n1(n1 + 1)

2

W2 =
n∑

i=1
Ri − n2(n2 + 1)

2

U = min(W1, W2)

The criteria for rejecting the null hypothesis are the same as those seen above for the Wilcoxon rank sum
test, since these two tests are practically analogous.

In fact, the R function for the Mann-Whitney U is also wilcox.test with the paired t-tests at FALSE.

Example: The A gene expression data, shown in the table below, have been obtained for cancer
patients and control patients. The null hypothesis is that the two groups have the same mean
expression level. It is assumed that both groups are independent, use a significance level of 5%
to test this hypothesis.

Control Sick
0.55 0.342
0.51 0.794
0.888 0.465
0.98 0.249
0.514 0.335
0.645 0.4991
0.376 0.295
0.778 0.796
0.089 0.66

The problem does not provide any information about the distribution of either the small sample sizes or
the populations of the two groups of subjects, so the t-test cannot be applied. We proceed to use the
Mann-Whitney test, which does not require knowledge of the distribution of the samples.
control <- c(0.55,0.51,0.888,0.98,0.514,0.645,0.376,0.778,0.089)
sick <- c(0.342,0.794,0.465,0.249,0.335,0.499,0.295,0.796,0.66)
wilcox.test(sick,control,alternative = "two.sided",paired = FALSE)

##
## Wilcoxon rank sum exact test
##
## data: sick and control
## W = 28, p-value = 0.2973
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## alternative hypothesis: true location shift is not equal to 0

A p-value above 0.05 is obtained, therefore the null hypothesis is accepted, which means that the gene studied
has the same level of expression in patients and controls.

Exercises
1. The amount of iron in lentils is 3.3 mg/100g. The amount of iron in a package obtained from the

supermarket was measured in a laboratory and the result was 2.7 mg/100g. It was accepted that
the difference in iron content was not significant, but later studies showed that it was. It poses the
hypothesis contrast of the initial situation and the type of error that was made in accepting the difference
as non-significant. ¿Which type of error are researchers performing here?

2. The mean systolic blood pressure is assumed to be 115. It is hypothesized that the pressure is lower
than 115 in those who consume a small amount of dark chocolate each day. Select 100 people who
consume dark chocolate at random from the population, measure their blood pressure, and measure
the mean value of 111 and the standard deviation of 32. Considering that the blood pressure of the
population follows a normal distribution, determine whether including a small amount of dark chocolate
in the diet helps to lower blood pressure with an error of 0.1. Perform the statistical study of hypothesis
testing using two different criteria.

3. We want to determine what proportion of people are smokers. It is hypothesized that the proportion of
the population is less than 0.2. To ratify the hypothesis, 150 people are interviewed and it is found that
27 smoke regularly. Evaluate the null hypothesis with 5% significance.

4. Using the cabbages dataset from the MASS package, determine if the c39 and c52 crops have different
vitamin C content, knowing that the population distribution is normal and that the population variances
are equal. Use alpha = 0.05.
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