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What is Linear Algebra about? I

These lecture notes are based on the textbook by K. Hoffman and
Kunze, Ed 2,(1971). We assume a basic knowledge of matrix
algebra, matrix manipulations, matrix inversions, eigenvalue and
eigenvector computations
Outline

We introduce the notion of “vector space” as a set of objects
with certain operations.

We give the set of polynomials and functions with standard
addition operation as an example.

We describe linear independence, bases and coordinates in this
general setting.

We describe linear operators, the matrix of a linear operator
and we discuss how the differentiation of polynomials is
represented as the multiplication of a matrix with a vector.
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What is Linear Algebra about? II

We introduce the notion of invertibility of a matrix and we
discuss the solution of linear systems of equations in terms of
matrix algebra;

We define the determinant of a matrix and introduce the
characteristic polynomial of a matrix and show that every
matrix annihilates its own characteristic polynomial.

We define the minimal polynomial of a matrix as the monic
polynomial of lowest degree that is annihilated by the given
matrix.

We define similar matrices as the ones that represent the
same linear transformation in terms of different bases. We
discuss how the characteristic and minimal polynomials are
used in the determination of similarity classes.
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What is Linear Algebra about? III

We discuss the “diagonalizability” of linear operators. We
define functions of matrices, in particular we discuss how one
can define the exponential of a matrix.

We introduce “inner product spaces” and generalize the
notion of orthogonality in abstract linear spaces.

We discuss complete orthonormal sets and their applications
in Fourier series.
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Vector spaces I

The definition of vector spaces relies on a number of notions from
abstract algebra. We briefly review these notions.

A “group” G is a set with a single operation on it; this
operation has to satisfy certain rules.

A “ring” R is a set with two operations defined on it. The
first operation is usually denoted by + and (R,+) is a group.
The second operation is usually denoted bu ·; elements of R
need not have multiplicative inverses.. These two operations
satisfy certain compatibility relations.

A “field” F is a set with two operations (F ,+, ·), F is a group
with respect to the addition, 0 is the additive identity, and
nonzero elements form a group with respect to multiplication.
These operations satisfy certain compatibility relations. The
real and complex numbers are typical examples of fields. In
these lectures we will work with these fields and denote them
by F .
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Vector spaces II

A vector space V over a field F is a set consisting of objects
called “‘vector” with an addition operation defined on it. The
set V is a group with respect to the addition operation. This
means, the addition of vectors is commutative, associative, it
has a zero element and each vector has an additive inverse.

+ : V → V

The fact that (F ,+) is a group tells us readily that for
example a half space cannot be a vector space, because
inverses (negadives) of vectors are not included.
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Vector spaces III

The elements of the field are called “scalars” as opposed to
vectors. The structure of a vector space includes the
“multiplication by scalars”

F × V → V

this operation gives a vector. (this should not be confused
with scalar multiplication that takes two vectors and gives a
scalar). The operations of multiplication by scalars and
addition are subject to certain compatibility conditions.

In short, a vector space is a set of objects that we know how
to add and how to multiply by scalars, subject to certain rules.
Typical example are pointed line segments in Rn, on column
vectors with n elements.

Reference of Abstract Algebra is: Fraleigh, J. B. (2003). A first
course in abstract algebra. 7th Edition. Pearson Education.
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Groups

A Group is a set G with a binary operation (usually shown as ∗)
∗ : G × G → G such that satisfies the followings axioms:

1 For every element g1, g2, g3 ∈ G ,
(g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3) (associativity of ∗)

2 There is an element e in G such that for all g ∈ G ,
g ∗ e = e ∗ g = g (identity element for ∗)

3 For each element g ∈ G , there exists an element g ′ ∈ G such
that g ∗ g ′ = g ′ ∗ g = e (inverse of g with respect to ∗)
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Examples of vector spaces I

Row vectors, column vectors, matrices, with componentwise
addition and multiplication by scalars are typical examples of
vector spaces. The set of functions also form vector spaces. Here
we should define what we meen by the addition of two functions.
If we have two functions f (x) and g(x), in order to define their
sum f + g , we should define its value at each x . Normally we do
thşs by

(f + g)(x) = f (x) + g(x).

Here note that the + sign on the left hand side is the addition
operation in the vector space of functions, while the + sign at the
right hand side is the addition operation in the field of real
numbers.
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Examples of vector spaces II

As a special case of the vector space of functions we will work with
the vector space of polynomials of degree at most n. These are of
the form

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x + a0.

Here the addition is the usual addition of polynomials, we note
that the 0 polynomial is the polynomial that is identially zero, i.e,
all of the ai ’s are zero.
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Subspaces I

A subset S of a vector space V is called a subspace, if it is itself a
vector space. The nontrivial thing to check is usually to ensure
that S is closed under the vector space operations. In particular
the zero vector should be in S . For example lines that do not pass
through the origin are not subspaces.
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Linear independence; Spanning set, Basis I

A set of vectos{X1,X2, . . . ,Xk} in a vector space V is called
linearly independent if the sum

c1X1 + c2X2 + · · ·+ ckXk = 0

implies

c1 = c2 = · · · = ck = 0.

Let us give an example: V is the vector space of polynomials of
order less than or equal to 3, X1 = (x + 1)2, X2 = (x − 1). We
form the linear combination

c1(x + 1)2 + c2(x − 1) = 0

and expand

c1(x
2 + 2x + 1) + c2(x − 1) = c1x

2 + (2c1 + c2)x + (c1 − c2) = 0
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Linear independence; Spanning set, Basis II

As zero polynomial is the polynomial all of whose coefficients are
zero, we should have

c1 = c2 = 0

these the set is linearly independent.
Example: Show that f1 = sin2x , f2 = cos2x and f3 = 1 are not
linearly independent.
A set of vectors {X1, . . . ,Xk} is called a “spanning set for V ”, if
for any X in V , we can find scalars ci such that

X = c1X1 + c2X2 + · · ·+ ckXk .

Example

S = {x3, x2, x , x + 1, x − 1}
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Linear independence; Spanning set, Basis III

is a spanning set for the space of polynomials of degree less than
equal to 3. We should find ci ’s such that

ax3+bx2+cx+d = c1(x
3)+c2(x

2)+c3(x)+c4(x−1)+c5(x+1)

Collection terms we get

ax3+bx2+cx+d = c1(x
3)+c2(x

2)+(c3+c4+c5)(x)+(−c4+c5)(1)

Equating coefficients we get

c1 = a, c2 = b, c3 + c4 + c5 = c , −c4 + c5 = d .

Not that the solution is not unique. But the definition is not
asking for a uniquely defined solution for the ci ’s.
If a spanning set is linearly independent, then these coefficients are
uniquely defined. In the case, the spanning set is called a “basis”.
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Linear independence; Spanning set, Basis IV

A “basis” for a vector space V is a linearly independent set that
spans V .
It can be shown that in the context of finite dimensional vector
spaces all bases t-have the same number of elements, and this
number is called the dimension of the vector space.
When we work with vectors we are used to represent them by sets
of numbers. This representation tacitly assumes that we are using
a “standard basis” and these numbers are the coefficients of given
vector with respect to this standard basis. For example when we
see the vector

X =

 1
2
3


we assume that it denotes the point in R3 whose x component is 1,
y component is 2 and z component is 3. On the other hand if we
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Linear independence; Spanning set, Basis V

were using the space of polynomials of degree less than or equal to
2, with a basis {x2, x , 1} we should understand it as the polynomial

p(x) = x2 + 2x + 3.

We might consider another basis for these polynomials, say
{(x − 1)2, (x − 1), 1}. Then

p(x) = 1(x − 1)2 + 2(x − 1) + 3

would denote a completely different polynomialç
We see that, a set of numbers, as coordinates makes sense only
when we specify the basis.
Recall that a basis consists of a set of vectors. Let’s denote these
as B = {ei}. Since they form a spanning set, any v can be written
as

v = v1e1 + v2e2 + · · ·+ vnen.
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Linear independence; Spanning set, Basis VI

the vi ’s are called the coefficients of the vector v with respect to
the basis B.
If we choose another basis B̃ = {ẽi}, then the components will be
denoted by ṽi and we should have

v = v1e1 + v2e2 + · · ·+ vnen = ṽ1ẽ1 + ṽ2ẽ2 + · · ·+ ṽnẽn.

We will show how to express the new components ṽi in terms of
the new basis elements and the old components
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Linear independence; Spanning set, Basis VII

v = v1e1 + v2e2 + · · ·+ vnen = ṽ1ẽ1 + ṽ2ẽ2 + · · ·+ ṽnẽn.

We know the expression of the new basis vectors with respect to
the old basis:
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Linear independence; Spanning set, Basis VIII

Thus we have a change of basis matrix P whose columns are the
components of the new basis elements with respect to the old
basis. Symbolically we denote this as ẽt = etP. Let X and X̃ the
components of the same vector v with respect to the old and to
the new basis:

v = etX = ẽtX̃ = etPX̃

It follows that X = PX̃ or X̃ = P−1X . Note that P is invertible
since the columns are linearly independent.
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Linear independence; Spanning set, Basis IX

Example: Rotation in R2 by an angle θ. X = PX̃ or X̃ = P−1X .
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Linear independence; Spanning set, Basis X

Example: Change of basis for the vector space of polynomials
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Linear operators; Kernel, range, nullity, rank I

It will be useful to think of a linear operator as an operation on
vectors that satisfied the linearity rules. Let T denore a linear
operator from a vector space V to a vector space W .

T : V → W .

, T should be well defined, i.e, it has to be defined on all elements
of V and its value T (X ) should be an element of W . The linearity
rules are

T (X + kY ) = T (X ) + kT (Y ).

Since T is linear it is sufficient to define it on the basis elements.
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Linear operators; Kernel, range, nullity, rank II

Examples: Rotations, reflections, projections in the plane.
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Linear operators; Kernel, range, nullity, rank III

Example: Differentiation of polynomials.
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Linear operators; Kernel, range, nullity, rank IV

The matrix of a linear transformation is the matrix whose columns
are the images of the basis elements of the domain, expressed with
respect to the basis of the range space.
Examples: Matrices for rotations, reflections, projections in the
plane.
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Linear operators; Kernel, range, nullity, rank V

Example: Matrices for the differentiation of polynomials.
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Linear operators; Kernel, range, nullity, rank VI

Change of basis: Let T : V → W and ẽt = etP on V and
f̃ t = f tQ on W . Let’s denote the matrix of the linear
transformation with respect to the old bases by A, i.e,
T (et) = f tA. With respect to the new basis

T (ẽt) = f̃ tÃ.

T (ẽt) = T (etP)

= T (et)P

= f tAP

f̃ tÃ = f tQÃ,
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Linear operators; Kernel, range, nullity, rank VII

Hence
f tAP = f tQÃ

It folows that
AP = QÃ

or
Ã = Q−1AP.
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Linear operators; Kernel, range, nullity, rank VIII

Expression with coordinate indices
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Linear operators; Kernel, range, nullity, rank IX

Example: Matrix of differentiation, how the differentiation of
polynomials is represented as the multiplication of a matrix with a
vector.
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Linear operators; Kernel, range, nullity, rank X

If W = V and we use the same basis in the domain and in the
range

Ã = P−1AP.

Those matrices that are related by the formula above are in fact
matrices of the same linear transformation with respect to different
bases.
These matrices are called “similar matrices”.
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Linear operators; Kernel, range, nullity, rank XI

Rank, nullity, invertibility

If T is a map from V to W , then the null space of T is the
set of vectors in V such that TX = 0. is a subset of V . It can
be shown that it is a subspace. This subspace is called the
kernel of T , Ker(T ). Its dimension is called the nullity of T .
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Linear operators; Kernel, range, nullity, rank XII

If T is a map from V to W , then the range space of T is the
set of vectors in W such that Y = TX , for some X in V . It is
is a subset of W . It can be shown that it is a subspace. This
subspace is called the range space or image of T , Im(T ). Its
dimension is called the rank of T .
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Linear operators; Kernel, range, nullity, rank XIII

Examples: Reflections, projections differentiations.

The rank nullity theorem

dim(V ) = rank(T ) + nullity(T )
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Linear operators; Kernel, range, nullity, rank XIV
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Linear functionals, the dual space I

A special form of linear transformations are linear maps from
V to W = F .

The set of such linear transformations is a vector space. It is
called the dual space of V and it is denoted by V ∗.

If the basis for V is {ei} then the set of linear transformations
fi defined by

fi (ej) = δij

is called the dual basis. Here δij = 1 if i = j and zero
otherwise.

The double dual V ∗∗ is defined as the dual of V ∗. If V is a
finite dimensional vector space, then

V ∗∗ = V .
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Solution set of linear systems of equations I

A system of linear equations in matrix form is AX = B. If B = 0
then the system is called homogeneous. otherwise it is called
inhomogeneous. The solvability of the system depends on the
rank/nullity of A
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Day 2: Determinants; Characteristic polynomial, minimal
polynomial I

The determinant of a matrix can be defined as a polynomial
function of the rowas or of the columns of a matrix, subject to
certain rules. In particular

det(AB) = det(A)det(B).

We prefer to give a recursive definition as below
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Day 2: Determinants; Characteristic polynomial, minimal
polynomial II

The characteristic polynomial kA(λ) of a matrix A is defined as

det(A− λI )

where I is the identity matrix and λ is a scalar. If A is an n × n
matrix its characteristic polynomial has order n. (we may assume
that kA(λ) is monic. Cayley-Hamilton theorem Every matrix
satisfies its characteristic polynomial.
Furthermore

det(P−1AP) = det(P−1)det(A)det(P) = det(A)

Thus the characteristic polynomial of similar matrices are the same.
The minimal polynomial mA(λ) of a matrix A is the monic
polynomial of least degree that is satisfied by A. Theorem The
minimal polynomial divides the characteristic polynomial.

ThinkBS: Basic Sciences in Engineering Education Advanced Linear Algebra



Day 2: Determinants; Characteristic polynomial, minimal
polynomial III

How to prove the existence of the minimal polynomial? This will
need the fact that polynomials in one indeterminate form a
so-called principal ideal domain. An idea is a set of polynomials I
with the property that whenever p(x) is in I then q(x)p(x) is also
in I . For example, polynomials p(x) such that p(A) = 0 form an
ideal. In a principle ideal domain, every ideal has a unique
generator. To prove the existence of the minimal polynomial, we
first show that the set of polynomials that satisfy p(A) = 0 is
nonempty. This is proved by the linear dependence of the powers
of A. Then the generator of the ideal is the minimal polynomial.
There are many proofs of the Cayley-Hamilton theorem and the
relation of minimal and characteristic polynomials. We adopt the
simple relationship given above. This is sufficient for a first step to
the classification of linear transformations.
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Day 2: Determinants; Characteristic polynomial, minimal
polynomial IV

Remark Polynomials in one variable are factorizable over the
complex numbers. This means both kA(λ) and mA(λ) can be
written as a product of linear factors raised to certain powers.

kA(λ) = (λ−λ1)
a1(λ−λ2)

a2 . . . (λ−λ1k)
ak , a1+a2+· · ·+ak = n

mA(λ) = (λ−λ1)
b1(λ−λ2)

b2 . . . (λ−λ1k)
bk , b1 ≤ a1, b2 ≤ a2, . . . , bk ≤ ak
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Day 2: Similarity Classes I

Similarity classes of matrices in 2 dimensions. In 2 dimensions, a
characteristic polynomial is a polynomial of degree 2

k(x) = (x − a1)(x − a2)

or
k(x) = (x − a1)

2

That means the roots are either distinct or repeated. Here we work
over the complex numbers. Thus if k(x) is irreducible, then its
roots are distinct. If the roots are distinct, then the minimal
polynomial should be

m(x) = (x − a1)(x − a2).

This is actually true in any dimensions. If the characteristic
polynomial has distinct roots, then the minimal and the
characteristic polynomials are the same.
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Day 2: Similarity Classes II

Remark: This is the generic case, in the sense that, if you pick a
polynomial randomly, its roots will be distinct. Nevertheless those
polynomials with repeated roots important because they determine
similarity classes of matrices.
If the roots are repeated, then the minimal polynomial can be
either

m(x) = (x − a1)

or
m(x) = (x − a1)

2

.
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Day 2: Similarity Classes III

We construct matrices for each case:
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Day 2: Similarity Classes IV

n = 3. In this case also, if the characteristic polynomial has
distinct roots, then the minimal polynomial is the same, and a
matrix that realize is as below. All cases are listed below:

k(x) = (x − a1)(x − a2)(x − a3),
m(x) = (x − a1)(x − a2)(x − a3),

k(x) = (x − a1)
2(x − a2), m(x) = (x − a1)

2(a2),

k(x) = (x − a1)
2(x − a2), m(x) = (x − a1)(x − a2),

k(x) = (x − a1)
3, m(x) = (x − a1)

3,

k(x) = (x − a1)
3, m(x) = (x − a1)

2,

k(x) = (x − a1)
3, m(x) = (x − a1).

We give matrices that realize these for each case.
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Day 2: Similarity Classes V

m(x) = (x − a)(x − b)(x − c), or if m(x) = (x − a)(x − b) put
c = a, or if m(x) = (x − a), put b = c = a If the minimal
polynomial is linear the matrix is realized by a diagonal matrix.
The converse is actually true:
Theorem. A matrix is diagonalizable, if and only if its minimal
polynomial is a product of linear factors. a 0 0

0 b 0
0 0 c
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Day 2: Similarity Classes VI

The minimal polynomial contains a quadratic factor
m(x) = (x − a)2(x − b) or m(x) = (x − a)2 (put b = a) a 0 0

1 a 0
0 0 b
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Day 2: Similarity Classes VII

The minimal polynomial contains a cubic factor m(x) = (x − a)3 a 0 0
1 a 0
0 1 a
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Day 2: Similarity Classes VIII

There are matrices with the same characteristic polynomial but
different minimal polynomials.
Question: Are these matrices similar?
If matrices A and B have different characteristic polynomials, they
cannot be similar. Because if they were similar they would have
the same characteristic polynomial.
If matrices A and B have different minimal polynomials, they
cannot be similar. Because if they were similar they would have
the same minimal polynomial.
Can we say that if matrices that have the same characteristic and
minimal polynomials are similar? NO
In 3 dimensions, the matrices above belong to distinct similarity
classes (this can be checked directly).
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Day 2: Similarity Classes IX

To summarize, if the minimal polynomial has degree 3

(x − a)3, (x − a)2(x − b), (x − a)(x − b)(x − c)

if the minimal polynomial has degree 2

(x − a)2, (x − a)(x − b)

if the minimal polynomial has degree 1

(x − a)
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Day 2: Similarity Classes X

In 4 dimensions the possibilities for the minimal polynomial are
m(x) has degree 4

(x−a)4, (x−a)3(x−b), (x−a)2(x−b)2, (x−a)2(x−b)(x−c), (x−a)(x−b)(x−c)(x−d)
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Day 2: Similarity Classes XI

m(x) has degree 3

(x − a)3, (x − a)2(x − b), (x − a)(x − b)(x − c)
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Day 2: Similarity Classes XII

m(x) has degree 2

(x − a)2, (x − a)(x − b),
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Day 2: Similarity Classes XIII

m(x) has degree 1
(x − a),
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Day 2: Similarity Classes XIV

Remark, in the case k(x) = (x − a)4, m(x) = (x − a)2, there are 2
possibilities, this shows that the equality of characteristic and
minimal polynomials is not enough the determine similarity classes.
As one goes to higher dimensions, there is room for placing blocks
of different sizes and it is easy to construct such examples.
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Day 2: Similarity Classes XV

A REDUCE program to check whether all matrices with
m(x) = (x − a)2 are similar or not.
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Day 2: Similarity Classes XVI

We found a matrix P that satisfies AP = PB but P is not
invertible.
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Day 2: Similarity Classes XVII

Some examples in higher dimensions
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Eigenvalues and eigenvectors I

We have seen how to construct examples of matrices with given
characteristic and minimal polynomials.
Consider the matrix equation

(A− λI )X = 0

This means X lies in the kernel of (A− λI ), in other words we
should have

det(A− λI ) = 0

The roots of the characteristic equation are called eigenvalues of
A and the vectors X that satisfy (A− λi I )X = 0 are called
eigenvectors associated with the eigenvalue λi .
Actually the set of eigenvectors associated to a given eigenvalue
form a vector space. One should rather talk of an eigenspace
associated to an eigenvalue.
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Eigenvalues and eigenvectors II

eigenvectors and eigenspaces can also be defined as follows. A
vector X is an eigenvector of A if there is a scalar λ such that
AX = λX .
Example: Projection operator:
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Eigenvalues and eigenvectors III

Examples of similarity classes n = 2
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Eigenvalues and eigenvectors IV

Examples of similarity classes n = 3
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Eigenvalues and eigenvectors V

Examples of similarity classes n = 4
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Eigenvalues and eigenvectors VI

Examples of similarity classes n = 5
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Eigenvalues and eigenvectors VII

Examples of similarity classes n = 6
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The Jordan Canonical form and the rational canonical form
I

In this section we will give an outline of the proofs of the existence
of canonical forms of matrices. We will need a number of basic
results from abstract algebra.

A field F is said to be algebraically closed, if every polynomial
with coefficients in F has a root in F . The field of real
numbers is not algebraically closed, because, for example the
polynomial x2 + 1 has no real roots. On the other hand the
field of complex numbers is algebraically closed. If F is
algebraically closed, every polynomial van be written as a
product of linear factors raised to certain powers.

The field of complex numbers is a “field extension” of real
numbers; this is done by introducing the element i which is
the square root of −1. It follows that, over the field of real
numbers, every polynomial can be written as a product of
linear or irreducible quadratic factors raised to certain powers.
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The Jordan Canonical form and the rational canonical form
II

Recall that a ring R is a set on which addition and
multiplication operations are defined (subject to certain rules).
A subset I of R is called an ideal, if whenever p is in I , qp is
also in I (one has to be careful with right/left multiplication).
Polynomials in one indeterminate is a typical example for a
ring. If we define I as those polynomials p(x) such that
p(T ) = 0, then any multiple of p will also annihilate T , thus
they will form an ideal.

A set of ring elements is said to generate an ideal, if every
member of the ideal can be written in terms of this generating
set. A ring is called a “principal ideal domain”, if every ideal
has a unique generator. The set of polynomials in a single
variable is a principal ideal domain.
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The Jordan Canonical form and the rational canonical form
III

This property is used crucially in the proofs of the existence of
canonical forms. An elegant example is the existence of the
minimal polynomial as a uniquely defined object. The
argument is as follows: If A is an n × n matrix, it belongs to
an n2 dimensional space. Therefore not all powers of A are
linearly independent. They satisfy a certain linear combination
relation to be equal to zero. This is an annihilating
polynomial, the ideal is nonempty. It has a unique generator,
and this is called the minimal plynomial.
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Subspace decompositions, direct sums I

In this section we want to decompose a given vector space into
smaller subspaces n such a way that the action of a given linear
transformation T on each of these subspaces has a simple form.
We need to start by understanding the notion of subspace
decomposition.
We recall that we define subspaces by their spanning sets. We
should think of a space Wi as the span of a certain set of vectors
Si .
Example: R3 = W1 +W2 +W3, where W1 is the (x , y) plane, W2

is the (x , z) plane, W3 is the (y , z) plane is a subspace
decomposition.
A subspace decomposition is called to be a direct sum, is a given
vector X can be uniquely decomposed as

X = X1 + X2 + Xk

with each Xi belonging to Wi .
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Subspace decompositions, direct sums II

Example: Example: R3 = W1 +W2 +W3, where W1 is the x axis,
W2 is the y axis, W3 is the z axis is a direct sum decomposition.
Remark: This example should not be misleading. The direct sum
decomposition does not imply any notion of orthogonality. We
have not yet defined orthogonality. For example

R2 = W1 +W2

where W1 is the span of e1 and W2 is the span of e1 + e2 is a
direct sum decomposition. We denote direct sums as

V = W1 ⊕W2 ⊕ · · · ⊕Wk .
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Invariant subspaces I

Invariant subspaces: A subspace W of V is said to be invariant
under A if the image of every vector in W under A lies in W .
The kernel of A and the eigenspaces are invariant subspaces.
Remark: If W is invariant under A it is also invariant under any
polynomial in A.
We will be interested in finding invariant direct sums,

V = W1 ⊕W2 ⊕ · · · ⊕Wk .

such that TWi ∈ Wi .
The Primary Decomposition Theorem: Let T be a linear operator
on a finite dimensional vector space V and let p be the minimal
polynomial of T

p(x) = (x − a1)
r1 . . . (x − ak)

rk

ThinkBS: Basic Sciences in Engineering Education Advanced Linear Algebra



Invariant subspaces II

Let Wi be the kernel of (T − a1)
r1 . Then

V = W1 ⊕W2 ⊕ · · · ⊕Wk

where TWi ∈ Wi . (That means we have an invariant direct sum
decomposition). Furthermore, the operators Ti that are the
restrictions of T to Wi have minimal polynomials (x − ai )

ri .
The proof of this theorem relies on writing T as a sum of
projections and it can be omitted at a first reading.
The importance of this therom lies in the fact that, without loss of
generality, we can work with linear transformations with minimal
polynomials (x − a)r .
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Nilpotent and diagonal matrices I

A linear operator T is called nilpotent, if T k = 0 for some k.
Theorem: Let T be a linear operator on a finite dimensional vector
space V and the minimal polynomial of T is a product of linear
factor (which is always the case when F = C . Then, there is a
nilpotent operator N and a diagonal operator D such that

T = D + N, DN = ND,

and D and N are uniquely determined and they are polynomials in
T .
This theorem tells us essentially the existence of the Jordan
canonical form J, for an operator T with a single eigenvalue a,
where J is the sum of a diagonal matrix and a matrix with ones
and/or zeros below the main diagonal
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Nilpotent and diagonal matrices II

The rational canonical form: A vector X is called to T iX form a
basis for V . The existence of a cyclic operator leads to the
”rational canonşcal form
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Examples I

A =

 3 1 −1
2 2 −1
2 2 0


Characteristic and minimal polynomials are the same:
k(x) = (x − 1)(x − 2)2. AX = X gives

3a+ b − c = a, 2a+ 2b − c = b, 2a+ 2b = c .

We get b = 0, c = 2a. Thus X = (1, 0, 2)t .
AY = 2Y gives

3a+ b − c = 2a, 2a+ 2b − c = 2b, 2a+ 2b = 2c .
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Examples II

We get b = 2a, c = 2a. Thus Y = (1, 2, 2)t . We found only one
eigenvector corresponding to the eigenvalue 2. We should find Z
such that AZ = 2Z + Y . Equivalently

(A− 2I )Z = Y

This is an inhomogeneous system in which the coefficient matrix is
non-invertible. The existence of solutions is not guaranteed a priori
for such systems. The condition is that the rank of the coefficient
matrix and the rank of the augmented system should be equal.

rank((A− 2I )) = rank([(A− 2I )Y ]).

rank

 1 1 −1
2 0 −1
2 2 −2

 = rank

 1 1 −1 1
2 0 −1 2
2 2 −2 2


This condition is satisfied.

ThinkBS: Basic Sciences in Engineering Education Advanced Linear Algebra



Examples III

The fact that this system has always a solution is ensured by the
existence theorem of the Jordan canonical form.
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Day 3 Inner Product Spaces I

Let F be the field of real or complex numbers and let V be a
vector space over F . An inner product on V is a function that
assigns to each pair of vectors X and Y an element of F , denoted
by (X ,Y ), such that for all vectors X , Y , Z , and for all scalars c ,

(X + Y ,Z ) = (X ,Z ) + (Y ,Z )

(cX ,Y ) = c(X ,Y )

(Y ,X ) = ¯(X ,Y )

(X ,X ) > 0 if X ̸= 0.

Examples:

The standard inner product on Rn i.e, the dot product is a
typical example.

On the space of matrices

(A,B) = trace(AB̄t =
∑
i ,j

Aij B̄ij
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Day 3 Inner Product Spaces II

If Q is an invertible matrix,

(X ,Y ) = ((̄Y )tQ̄tQX

is an inner product.

If V is the vector space of functions,

(f , g) =

∫ 1

0
f (t) ¯g(t) dt

is an inner product.

ThinkBS: Basic Sciences in Engineering Education Advanced Linear Algebra



Norms I

The positive square root of (X ,X ) is called the norm of X and it is
denoted by ||X ||.
The properties of the inner products lead to the following
properties for norms

||cX || = |c| ||X ||,
||X || > 0 for X ̸= 0.

|(X ,Y )| ≤ ||X ||| ||Y ||, (Cauchy-Schwarz inequality)

||X + Y || ≤ ||X ||+ ||Y ||.
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Gram-Schmidt orthogonalization I

Given any set of linearly independent vectors, one can construct an
orthogonal set of vectors.
Example: {X1,X2,X3}.

Start by Y1 = X1

Define Y2 = X2 − (X2,Y1)/||Y1|| Y1. Then (Y2,Y1) = 0.

Define Y3 = X3 − (X3,Y2)/||Y2|| Y2 − (X3,Y1)/||Y1|| Y1.
Then (Y3,Y1) = (Y3,Y2) = 0.

Define Ym =
Xm − (Xm,Ym−1)/||Ym−1|| Ym−1 − · · · − (X3,Y1)/||Y1|| Y1.
Then (Ym,Y1) = . . . (Ym,Ym−1) = 0.

After normalization we get an orthonormal set.
Theorem: Every inner product space has an orthonormal basis.
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Orthogonal direct sum decompositions I

If S is a set in a vector space, the orthogonal complement of S is
the set of vectors that are orthogonal to the vectors in S .
A vector Y in W is a best approximation to X by vectors in W
such that ||X − Y || ≤ ||X − Z || for all Z in W .
Given a subspace W of an inner product space V and a vector X
in V , a vector Y in W , is the best approximation for X in W , if
and only if X − Y is orthogonal to every vector in W . This is the
orthogonal projection of X on W .
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The adjoint of a linear transformation I

Let T be a linear operator on an inner product space. We say that
T has an adjoint on V if there is a linear operator T ∗on V such
that

(TX ,Y ) = (X ,T ∗Y )

For example if A is an n × n matrix,

(TX ,Y ) = (TX )tY = X tT tY = (X ,T tY ).

Thus the adjoint of a linear transformation is its transpose.
A linear operator is self adjoint if

T ∗ = T .
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Normal Operators I

An operator on a finite dimensional inner product space is
called normal, if it commutes with its adjoint,

TT ∗ = T ∗T .

: Let V be a finite dimensional inner product space. Every
self adjoint operator T has a (nonzero) eigenvector.
The proof is non elementary.

Theorem: Let T be a self adjoint operator on V . Eigenvalues
of T are real. Let TX = cX . c(X ,X ) = (cX ,X ) =
(TX ,X ) = (X ,T ∗X ) = (X ,TX ) = (X , cX ) = c̄(X ,X ) Thus
c = c̄ .

Theorem: Let T be a self adjoint operator on V . Eigenvectors
associated with different eigenvalues are orthogonal. Let
TX = cX , TY = dY . c(X ,Y ) = (cX ,Y ) = (TX ,Y ) =
(X ,T ∗Y ) = (X ,TY ) = (X , dY ) = d̄(X ,Y ) = d(X ,Y ) If
c ̸= d , then X ,Y ) = 0.
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Normal Operators II

Theorem. If T is a self-adjoint operator, then it is
diagonalizable, with respect to an orthonormal basis.
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Diagonalization I

A matrix is called
Theorem. If A is a normal matrix, then there is a unitary matrix P
such that

P = P−1AP

is diagonal. (Unitary means P̄tP = I . Orthogonal means PtP = I
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