Advanced Calculus Topology: Definition

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

Assume that X is a non-empty set. A collection $\mathcal{T} \subseteq P(X)$ of subsets of X is called a topology on X, if

- 2 Any finite intersection of elements of \mathcal{T} , belongs to \mathcal{T} .
- **③** Any arbitrary union of elements of \mathcal{T} , belongs to \mathcal{T} .

A set together with a topology on it is called a topologic space. An element of ${\cal T}$ is called an open set.

Example 1: P(X) is a topology on any set X. It is called the discrete topology.

Example 2: $\{\emptyset, X\}$ is a topology on any set X. It is called the trivial or indiscrete topology.

Example 3: The collection of all open sets in a metric space, is a topology on the underlying set. It is called metric topology.

Assume that (X, \mathcal{T}) is a topological space and $Y \subseteq X$. In this case,

$$\mathcal{T}_{|Y} = \{ O \cap Y \mid O \in \mathcal{T} \}$$

is a topology on Y, which is called subspace or inherited topology. (why $\mathcal{T}_{|Y}$ is a topology?)

The concept in terms of metric spaces is as follows: Assume $(Y, d_{|Y}) \subseteq (X, d)$ is obtained by restricting d to $Y \times Y$. In this case, a set $H \subseteq Y$ is open in $(Y, d_{|Y})$ iff there is an open set $G \subseteq X$ such that $H = G \cap Y$.