Advanced Calculus
 Field of Real and Complex Numbers

ThinkBS: Basic Sciences in Engineering Education
Kadir Has University, Turkey

We saw that some subsets of \mathbb{Q} does not have a supremum or an infimum in \mathbb{Q}. The property of 'having a supremum by any non-empty bounded from above' is so important that without it many results in Calculus will fail to exist.
For example, if supremum property does not hold, we can never say:
(1) A continuous function on a closed interval, obtains its absolute minimum and maximum value.
(2) (Intermediate Value Theorem) A continuous function defined on an interval $[a, b]$ takes on all intermediate values.
(3) (Bolzano-Weierstrass theorem) Any increasing bounded sequence (of Real numbers) is convergent.
So it is not only the functions, but the spaces themselves are also important.

Theorem: There exists an ordered field \mathbb{R} which has the least-upper-bound property. Moreover, \mathbb{R} contains \mathbb{Q} as a subfield.
\mathbb{R} can be constructed form \mathbb{Q} by means of Cauchy Sequences or by Dedekind cuts.

For further details see 'Chap. 1: Appendix'.

Archimedean Property and Densness of \mathbb{Q} in \mathbb{R}

Archimedean Property: If $x, y \in \mathbb{R}$ and $x>0$, then there is a positive integer n such that $n x>y$.

Densness of \mathbb{Q} in \mathbb{R} : If $x, y \in \mathbb{R}$ and $x<y$, then there exists an $r \in \mathbb{Q}$ such that $x<r<y$.

Both of these properties, and also existence of sqaure (and also n-th) roots in \mathbb{R} for example, all are results of supremum property of \mathbb{R}.

Field of Complex Numbers \mathbb{C}

As a set, define $\mathbb{C}=\mathbb{R} \times \mathbb{R}$. On \mathbb{C} we define
$(a, b)+(c, d)=(a+c, b+d)$ and
$(a, b) .(c, d)=(a c-b d, a d+b c)$.
Define $i=(0,1)$. With this notation every complex number (a, b) can be written as $a+b i$ with $i^{2}=-1$.

For a Complex number $z=a+b i$, we define $\Re(z)=a$ (real part) and $\Im(z)=b$ (imaginary part).

In this way, \mathbb{C} is a field containing \mathbb{R} which cannot be turned into an "ordered field". \mathbb{C} is algebraically closed: Every non-constant polynomial with complex coefficients, has at least one root in \mathbb{C}.

For further details see 'Chap. 1: The Complex Field’.

