Advanced Calculus Field of Real and Complex Numbers

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

We saw that some subsets of \mathbb{Q} does not have a supremum or an infimum in \mathbb{Q} . The property of 'having a supremum by any non-empty bounded from above' is so important that without it many results in Calculus will fail to exist.

For example, if supremum property does not hold, we can never say:

- A continuous function on a closed interval, obtains its absolute minimum and maximum value.
- (Intermediate Value Theorem) A continuous function defined on an interval [a, b] takes on all intermediate values.
- (Bolzano–Weierstrass theorem) Any increasing bounded sequence (of *Real* numbers) is convergent.

So it is not only the functions, but the spaces themselves are also important.

- **Theorem**: There exists an ordered field \mathbb{R} which has the least-upper-bound property. Moreover, \mathbb{R} contains \mathbb{Q} as a subfield.
- $\mathbb R$ can be constructed form $\mathbb Q$ by means of Cauchy Sequences or by Dedekind cuts.
- For further details see 'Chap. 1: Appendix'.

Archimedean Property: If $x, y \in \mathbb{R}$ and x > 0, then there is a positive integer *n* such that nx > y.

Densness of \mathbb{Q} in \mathbb{R} : If $x, y \in \mathbb{R}$ and x < y, then there exists an $r \in \mathbb{Q}$ such that x < r < y.

Both of these properties, and also existence of sqaure (and also n-th) roots in $\mathbb R$ for example, all are results of supremum property of $\mathbb R.$

As a set, define
$$\mathbb{C} = \mathbb{R} \times \mathbb{R}$$
. On \mathbb{C} we define
 $(a, b) + (c, d) = (a + c, b + d)$ and
 $(a, b).(c, d) = (ac - bd, ad + bc)$.

Define i = (0, 1). With this notation every complex number (a, b) can be written as a + bi with $i^2 = -1$.

For a Complex number z = a + bi, we define $\Re(z) = a$ (real part) and $\Im(z) = b$ (imaginary part).

In this way, \mathbb{C} is a field containing \mathbb{R} which cannot be turned into an "ordered field". \mathbb{C} is algebraically closed: Every non-constant polynomial with complex coefficients, has at least one root in \mathbb{C} .

For further details see 'Chap. 1: The Complex Field'.