Advanced Calculus Introduction to Fields

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

A field is a set F with two operations, called addition and multiplication, which satisfy the following "field axioms":

Axioms of Addition:

- (A1) If $x, y \in F$, then their sum x + y is in F.
- (A2) Addition is commutative: For all x, y ∈ F, x + y = y + x.
- (A3) Addition is associative: For all $x, y, z \in F$, (x + y) + z = x + (y + z).
- (A4) F contains an element 0 such that 0 + x = x for every $x \in F$.
- (A5) For every $x \in F$ there is an element $-x \in F$ such that x + (-x) = 0.

Axioms of Multiplication:

- (M1) If $x, y \in F$, then their product xy is in F.
- (M2) Multiplication is commutative: For all $x, y \in F$, xy = yx.
- (M3) Multiplication is associative: For all x, y, z ∈ F, (xy)z = x(yz).
- (M4) F contains an element $1 \neq 0$ such that 1x = x for every $x \in F$.
- (M5) For every 0 ≠ x ∈ F there is an element 1/x = x⁻¹ ∈ F such that x.(1/x) = 1.

The Distributive Law:

• (D) For all x, y,
$$z \in F$$
, $x(y+z) = xy + xz$

Let S be a set. An **order** on S is a relation, denoted by <, with the fol lowing two properties:

- If x, y ∈ S then one and only one of the statements x < y,
 x = y, y < x is true.
- 2 If x, y, $z \in S$, if x < y and y < z then x < z.

The statement "x < y" may be read as "x is less than y".

An **ordered field** is a field F which is also an ordered set, such that:

- If x, y, $z \in F$, and y < z, then x + y < x + z.
- 2 If $x, y \in F$, and 0 < x, 0 < y then 0 < xy.

 $(\mathbb{Q}, +, ., <)$, or the field or rational numbers, is an example of a ordered field. See 'Chap. 1: Fields' for more details on fields.