Abstract Algebra Cosets and Lagrange's Theorem

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Abstract Algebra

Assume $H \leq G$. Let the relation \sim_L be defined on G by

$$\mathsf{a}\sim_{\mathsf{L}}\mathsf{b}$$
 iff $\mathsf{a}^{-1}\mathsf{b}\in\mathsf{H}$

and let \sim_R be defined by

$$a \sim_L b$$
 iff $ab^{-1} \in H$

Then \sim_L and \sim_R are both equivalence relations on *G*.

Suppose $a \in G$. The equivalence class of a consists of all $x \in G$ such that $a \sim_L x$, which means all $x \in G$ such that $a^{-1}x \in H$ which happens if and only if $a^{-1}x = h$ for some $h \in H$, or equivalently, if and only if x = ah for some $h \in H$.

The subset $aH = \{ah \mid h \in H\}$ of *G* is the left coset of *H* containing *a*, while the subset $Ha = \{ha \mid h \in H\}$ is the right coset of *H* containing *a*.

We know $3\mathbb{Z} \leq \mathbb{Z}$. The left cosets of $3\mathbb{Z}$ in \mathbb{Z} are:

$$\begin{array}{l} 0+3\mathbb{Z}=3\mathbb{Z}=\{\ldots,-6,-3,0,3,6,\ldots\}\\ 1+3\mathbb{Z}=\{\ldots,-5,-2,1,4,7,\ldots\}\\ 2+3\mathbb{Z}=\{\ldots,-4,-1,2,5,\ldots\}\end{array}$$

What about $3 + 3\mathbb{Z}$? Which one of the **sets** above are subgroups? First note that every coset (left or right) of a subgroup H of a group G has the same number of elements as H. (Consider the one-to-one onto map $f : H \to aH$ from given by f(h) = ah). Lagrange's theorem states that:

Lagrange's theorem

Let H be a subgroup of a finite group G. Then the order of H (number of elements in H) is a divisor of the order of G.

First note that every coset (left or right) of a subgroup H of a group G has the same number of elements as H. (Consider the one-to-one onto map $f : H \to aH$ from given by f(h) = ah). Lagrange's theorem states that:

Lagrange's theorem

Let H be a subgroup of a finite group G. Then the order of H (number of elements in H) is a divisor of the order of G.

Corollary: Every group of prime order is cyclic. (Why?)

First note that every coset (left or right) of a subgroup H of a group G has the same number of elements as H. (Consider the one-to-one onto map $f : H \to aH$ from given by f(h) = ah). Lagrange's theorem states that:

Lagrange's theorem

Let H be a subgroup of a finite group G. Then the order of H (number of elements in H) is a divisor of the order of G.

Corollary: Every group of prime order is cyclic. (Why?)

Definition: The number of left cosets of H in G is the index (G : H) of H in G. If G is finite, then (G : H) is finite and (G : H) = |G|/|H|, since every coset of H contains |H| elements.

/₽ ▶ ◀ ⋽ ▶ ◀