Abstract Algebra

Permutations, Symmetric and Alternating Group

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

Permutation Groups

Consider the set $X=\{1,2,3, \ldots, n\}$ with n elements. The set of all one-to-one and onto functions from X to itself with function composition is called the permutation group on n elements and is shown by S_{n}.

Each element of $\sigma \in S_{n}$ is normally shown by a two-line notation which the second line specifies the 'permuted' element:

$$
\left(\begin{array}{ccccc}
1 & 2 & 3 & \ldots & n \\
\sigma(1) & \sigma(2) & \sigma(3) & \ldots & \sigma(n)
\end{array}\right)
$$

Permutation Groups: S_{2} and S_{3}

We have $S_{2}=\left\{e=\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right),\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)\right\}$
and

$$
\begin{aligned}
S_{3}=\{e= & \left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 2 & 3
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right), \\
& \left.\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right)\right\}
\end{aligned}
$$

Specify the inverse of each element for each of the groups above. Is S_{3} Abelian?
How many elements will S_{n} have?
Can you find all subgroups of S_{3} ?

Permutation groups are used in the study of symmetries of geometric shapes. For instance the group of symmetries of a square D_{4} or octic group is a subgroup of S_{4}.

Permutation Groups and Symmetries

Permutation groups are used in the study of symmetries of geometric shapes. For instance the group of symmetries of a square D_{4} or octic group is a subgroup of S_{4}.

They are also very useful in the study of possibility of finding roots of polynomial equations using radicals.

For further details on permutation groups, look at Part 2 Section 8 of the textbook.

Permutation Groups and Cayley's Theorem

Cayley's Theorem

Every group is isomorphic to a group of permutations.

This theorem states that symmetric groups are so rich that a copy of every group (finite or infinite - infinite symmetric groups are also defined similarly) can be found inside them.

For a proof of this, look at Part 2 Section 8 of the textbook.

Orbits and Cycles

Consider A as a non empty set and σ in the group of its permutations. We define an equivalence relation \sim on A as following:

For $a, b \in A, a \sim b$ iff there is an $n \in \mathbb{Z}$ such that $\sigma^{n}(a)=b$
The equivalence classes defined by \sim are called orbits of σ.
A permutation $\sigma \in S_{n}$ is called a cycle if it has at most one orbit containing more than one element. The length of a cycle is the number of elements in its largest orbit.

We show cycles by single-line notation (omitting fixed points):

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
3 & 2 & 5 & 1 & 4
\end{array}\right)=(1,3,5,4)
$$

Permutations and Cycles

Using cyclic notation, it can be shown that any permutation $\sigma \in S_{n}$ can be written as a product of disjoint cycles, for instance:

$$
\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 8 & 6 & 7 & 4 & 1 & 5 & 2
\end{array}\right)=(1,3,6)(2,8)(4,7,5)
$$

By disjoint, we mean that any integer is moved by at most one of these cycles, hence no one number appears in the notations of two different cycles.

Even and Odd Permutations

A transposition is defined as a cycle of length 2.
Theorem: No permutation in S_{n} can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.

Can you write $(2,5,3)$ as a product of transpositions?

A transposition is defined as a cycle of length 2.
Theorem: No permutation in S_{n} can be expressed both as a product of an even number of transpositions and as a product of an odd number of transpositions.

Can you write $(2,5,3)$ as a product of transpositions?
A permutation of a finite set is even or odd according to whether it can be expressed as a product of an even number of transpositions or the product of an odd number of transpositions, respectively. We define the sign of an even permutation equal to 1 and of an odd one equal to -1 .

Theorem and Definition: For $n \geq 2$, the collection of all even permutations of $\{1,2,3, \ldots, n\}$ forms a subgroup of order $n!/ 2$ of the symmetric group S_{n}. This subgroup is called the alternating group A_{n}.
For more information on Alternating group, look at Part 2 Section 9.

