Abstract Algebra Cyclic Groups

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Abstract Algebra

Let G be a group and let $g \in G$. Then

$$\langle g \rangle := \{g^n | n \in \mathbb{Z}\}$$

is a subgroup of G and is the smallest subgroup of G that contains g. This subgroup is called the cyclic group generated by g.

A group is called cyclic if there is a $g \in G$ such that $G = \langle g \rangle$. In such case g is called **a** generator of G. Let G be a group and let $g \in G$. Then

$$\langle g \rangle := \{g^n | n \in \mathbb{Z}\}$$

is a subgroup of G and is the smallest subgroup of G that contains g. This subgroup is called the cyclic group generated by g.

A group is called cyclic if there is a $g \in G$ such that $G = \langle g \rangle$. In such case g is called **a** generator of G.

Example 1: $\langle 2 \rangle = \{2n | n \in \mathbb{Z}\} = 2\mathbb{Z}$ is a cyclic subgroup of \mathbb{Z} (additive notation).

Let G be a group and let $g \in G$. Then

$$\langle g \rangle := \{g^n | n \in \mathbb{Z}\}$$

is a subgroup of G and is the smallest subgroup of G that contains g. This subgroup is called the cyclic group generated by g.

A group is called cyclic if there is a $g \in G$ such that $G = \langle g \rangle$. In such case g is called **a** generator of G.

Example 1: $\langle 2 \rangle = \{2n | n \in \mathbb{Z}\} = 2\mathbb{Z}$ is a cyclic subgroup of \mathbb{Z} (additive notation).

Example 2: $<1>=<3>=\mathbb{Z}_4$ is a cyclic group (additive notation).

- Every cyclic group is Abelian.
- A subgroup of a cyclic group is cyclic.
- The subgroups of \mathbb{Z} under addition are precisely the groups $n\mathbb{Z}$ under addition for $n \in \mathbb{Z}$.

For further properties of cyclic groups and their subgroups look at Part 1 Section 6 of the textbook.