Abstract Algebra
 Algebraic and Normal Extensions

ThinkBS: Basic Sciences in Engineering Education
Kadir Has University, Turkey

Algebraic Extensions

An extension field E of a field F is an algebraic extension of F if every element in E is algebraic over F. If an extension field E of a field F is of finite dimension n as a vector space over F, then as we have mentioned before, E is a finite extension of degree
$[E: F]=n$ it over F.
If E is a finite extension field of a field F, and K is a finite extension field of E, then K is a finite extension of F, and

$$
[K: E][E: F]=[K: F]
$$

A finite extension field E of a field F is an algebraic extension of F.
For further information look at section 40.

Algebraic Extensions

Let E be an extension field of a field F, and let $\alpha_{1}, \alpha_{2} \in E$, not necessarily algebraic over F. By definition, $F\left(\alpha_{1}\right)$ is the smallest extension field of F in E that contains α_{1}. Similarly, $\left(F\left(\alpha_{1}\right)\right)\left(\alpha_{2}\right)$ can be characterized as the smallest extension field of F in E containing both α_{1} and α_{2}. We could equally have started with α_{2}, so $\left(F\left(\alpha_{1}\right)\right)\left(\alpha_{2}\right)=\left(F\left(\alpha_{2}\right)\right)\left(\alpha_{1}\right)$. We denote this field by $F\left(\alpha_{1}, \alpha_{2}\right)$. Similarly, for $\alpha_{i} \in E, F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is the smallest extension field of F in E containing all the α_{i} for $i=1, \ldots, n$. We obtain the field $F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ from the field F by adjoining to F the elements α_{i} in $E . F\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ can be characterized as the intersection of all subfields of E containing F and all the α_{i}.

Normal Extensions

A normal extension E of F is a field extension such that for every polynomial $p(x)$ with coefficients in F, if E contains one of its roots, then E contains all of its roots.
\mathbb{C} is a normal extension of \mathbb{R}. This follows from the Fundamental Theorem of Algebra which states that: The field \mathbb{C} of complex numbers is an algebraically closed field.
$\mathbb{Q}(\sqrt[3]{2})=\{x+y \sqrt[3]{2}+z \sqrt[3]{4} \mid x, y, z \in Q\}$ is not a normal extension of \mathbb{Q}, since the complex roots of $x^{3}-2$ are not in $\mathbb{Q}(\sqrt[3]{2})$.

Normal Extensions

Theorem: L is a normal extension of K if for some polynomial $p(x)$ with coefficients in K, L contains all roots of $p(x)$.

Example: $\mathbb{Q}(\sqrt{6})$ contains $\sqrt{6}$ and $-\sqrt{6}$, which are all the roots of $p(x)=x^{2}-6$, which is a polynomial with coefficients in \mathbb{Q}.

