Abstract Algebra Algebraic and Normal Extensions

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Abstract Algebra

An extension field E of a field F is an algebraic extension of F if every element in E is algebraic over F. If an extension field E of a field F is of finite dimension n as a vector space over F, then as we have mentioned before, E is a finite extension of degree [E : F] = n it over F.

If E is a finite extension field of a field F, and K is a finite extension field of E, then K is a finite extension of F, and

[K:E][E:F] = [K:F]

A finite extension field E of a field F is an algebraic extension of F.

For further information look at section 40.

Let E be an extension field of a field F, and let $\alpha_1, \alpha_2 \in E$, not necessarily algebraic over F. By definition, $F(\alpha_1)$ is the smallest extension field of F in E that contains α_1 . Similarly, $(F(\alpha_1))(\alpha_2)$ can be characterized as the smallest extension field of F in Econtaining both α_1 and α_2 . We could equally have started with α_2 , so $(F(\alpha_1))(\alpha_2) = (F(\alpha_2))(\alpha_1)$. We denote this field by $F(\alpha_1, \alpha_2)$. Similarly, for $\alpha_i \in E$, $F(\alpha_1, \ldots, \alpha_n)$ is the smallest extension field of F in E containing all the α_i for i = 1, ..., n. We obtain the field $F(\alpha_1, \ldots, \alpha_n)$ from the field F by adjoining to F the elements α_i in E. $F(\alpha_1, \ldots, \alpha_n)$ can be characterized as the intersection of all subfields of E containing F and all the α_i .

A normal extension E of F is a field extension such that for every polynomial p(x) with coefficients in F, if E contains one of its roots, then E contains all of its roots.

 \mathbb{C} is a normal extension of \mathbb{R} . This follows from the **Fundamental Theorem of Algebra** which states that: The field \mathbb{C} of complex numbers is an algebraically closed field.

 $\mathbb{Q}(\sqrt[3]{2}) = \{x + y\sqrt[3]{2} + z\sqrt[3]{4} \mid x, y, z \in Q\} \text{ is not a normal extension of } \mathbb{Q}, \text{ since the complex roots of } x^3 - 2 \text{ are not in } \mathbb{Q}(\sqrt[3]{2}).$

Theorem: *L* is a normal extension of *K* if for some polynomial p(x) with coefficients in *K*, *L* contains all roots of p(x).

Example: $\mathbb{Q}(\sqrt{6})$ contains $\sqrt{6}$ and $-\sqrt{6}$, which are all the roots of $p(x) = x^2 - 6$, which is a polynomial with coefficients in \mathbb{Q} .