# Abstract Algebra <br> Irreducible Polynomial and Simple Extensions 

# ThinkBS: Basic Sciences in Engineering Education 

Kadir Has University, Turkey

## Irreducible Polynomial

Let $E$ be a field extension of $F$, and let $\alpha \in E$ be algebraic over $F$. Then $\{f(x) \in F[x] \mid f(\alpha)=0\}=<p(x)>$ for some polynomial $p(x) \in F[x]$. Furthermore, $p(x)$ is irreducible over $F$.

As a corollary let $E$ be an extension field of $F$, and let $\alpha \in E$ be algebraic over $F$. Then there is a unique irreducible polynomial $p(x) \in F[x]$ such that $p(x)$ is monic, $p(\alpha)=0$, and for any polynomial $f(x) \in F[x]$ with $f(\alpha)=0, p(x)$ divides $f(x)$.

## Irreducible Polynomial

Let $E$ be a field extension of a field $F$, and let $\alpha \in E$ be algebraic over $F$. The unique monic polynomial $p(x)$ discussed above is called the irreducible polynomial for $\alpha$ over $F$ or the minimal polynomial for $\alpha$ over $F$, and it is denoted $\operatorname{irr}(\alpha, F)$. The degree of the polynomial $\operatorname{irr}(\alpha, F)$ is called the degree of $\alpha$ over $F$ and this number is denote by $\operatorname{deg}(\alpha, F)$.

Example 1: $\operatorname{irr}(\sqrt{2}, \mathbb{Q})=x^{2} \mid 2$. (why?) $\sqrt{2}$ is algebraic over $\mathbb{Q}$ of degree 2.

Example 2: $\operatorname{irr}(\sqrt{1+\sqrt{3}}, \mathbb{Q})=x^{4}-2 x^{2}-2$. (why?) $\sqrt{1+\sqrt{3}}$ is algebraic over $\mathbb{Q}$ of degree 4 .

Let $E$ be an extension field of a field $F$, and let $\alpha \in E$. Let $\phi_{\alpha}$ be the evaluation homomorphism of $F[x]$ into $E$ with $\phi_{\alpha}(a)=a$ for $a \in F$ and $\phi_{\alpha}(x)=\alpha$. We consider two cases:

- Suppose $\alpha$ is algebraic over $F$. Then the kernel of $\phi_{\alpha}$ is $<\operatorname{irr}(\alpha, F)>$. Since $<\operatorname{irr}(\alpha, F)>$ is a maximal ideal of $F[x]$, therefore, $F[x] /<\operatorname{irr}(\alpha, F)>$ is a field and is isomorphic to the image $\phi_{\alpha}(F[x])$ in $E$. This subfield is the smallest subfield of $E$ containing $F$ and $\alpha$. We denote this field by $F(\alpha)$.
- Suppose $\alpha$ is transcendental over $F$. Then $\phi_{\alpha}$ gives an isomorphism of $F[x]$ with a subdomain of $E$. Thus in this case $\phi_{\alpha}(F[x])$ is not a field but an integral domain that we denote by $F[a]$. Now, $E$ contains a field of quotients of $F[a]$, which is thus the smallest subfield ofE containing $F$ and $\alpha$. As before, we also denote this field by $F(\alpha)$.

Example: Since $\pi$ is transcendental over $\mathbb{Q}$, the field $\mathbb{Q}(\pi)$ is isomorphic to the field $\mathbb{Q}(x)$ of rational functions over $\mathbb{Q}$ in the indeterminate $x$. Thus from a structural viewpoint, an element that is transcendental over a field $F$ behaves as though it were an indeterminate over $F$.

An extension field $E$ of a field $F$ will be called a simple extension of $F$ if $E=F(\alpha)$ for some $\alpha \in E$.

Theorem: Let $E=F(\alpha)$ be a simple extension of a field $F$ with $\alpha$ algebraic over $F$. Let $n=\operatorname{deg}(\alpha, F)$. Then every $\beta \in F(\alpha)$ can be uniquely expressed in the form

$$
\beta=b_{0}+b_{1} \alpha+b_{2} \alpha^{2}+\cdots+b_{n-1} \alpha^{n-1}
$$

with $b_{i} \in F$.

Let $E$ be an extension field of $F$ and let $\alpha \in E$ be algebraic over $F$. If $\operatorname{deg}(\alpha, F)=n$, then $F(\alpha)$ is a vector space over $F$ with dimension $n$ and basis $\left\{a, \alpha, \alpha^{2}, \ldots, \alpha^{n-1}\right\}$. Furthermore, every element $\beta \in F(a)$ is algebraic over $F$ and $\operatorname{deg}(\beta, F) \leq \operatorname{deg}(\alpha, F)$

Example: The polynomial $p(x)=x^{2}+x+1$ in $\mathbb{Z}_{2}[x]$ is irreducible over $\mathbb{Z}_{2}$. (why?) We know that there is an extension field $E$ of $\mathbb{Z}_{2}$ containing a zero $\alpha$ of $x^{2}+x+1$. This extension $\mathbb{Z}_{2}(\alpha)$ has as elements $0+0 \alpha=0,1+0 \alpha=1,0+1 \alpha=\alpha$, and $1+1 \alpha=1+\alpha$. This is a field with 4 elements, and for the multiplication one need to see that $\alpha^{2}=-\alpha-1=\alpha+1$. (why?)

We have seen before that $\mathbb{R}[x] /<x^{2}+1>$ is an extension field of $\mathbb{R}$. Consider

$$
\alpha=x+<x^{2}+1>
$$

Then $\mathbb{R}(\alpha)=\mathbb{R}[x] /<x^{2}+1>$ and it consists of all elements of the form $a+b \alpha$ for $a, b \in \mathbb{R}$. But since $\alpha^{2}+1=0$, we see that $\alpha$ plays the role of $i \in \mathbb{C}$, and $a+b \alpha$ plays the role of $a+b i \in \mathbb{C}$. Hence, we can consider $\mathbb{C}$ as the extension field of $\mathbb{R}$ :

$$
\mathbb{C} \simeq \mathbb{R}(\alpha)
$$

The number $i \in \mathbb{C}$ has minimal polynomial $x^{2}+1$ over $\mathbb{R}$ and $\mathbb{C}=\mathbb{R}(i)$. Thus for every complex number $\beta, \operatorname{deg}(\beta, \mathbb{R}) \leq 2$. This implies that every complex number that is not a real number is a zero of some irreducible polynomial of degree two in $R[x]$.

