Abstract Algebra Irreducible Polynomial and Simple Extensions

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Abstract Algebra

Let *E* be a field extension of *F*, and let $\alpha \in E$ be algebraic over *F*. Then $\{f(x) \in F[x] \mid f(\alpha) = 0\} = < p(x) >$ for some polynomial $p(x) \in F[x]$. Furthermore, p(x) is irreducible over *F*.

As a corollary let *E* be an extension field of *F*, and let $\alpha \in E$ be algebraic over *F*. Then there is a unique irreducible polynomial $p(x) \in F[x]$ such that p(x) is monic, $p(\alpha) = 0$, and for any polynomial $f(x) \in F[x]$ with $f(\alpha) = 0$, p(x) divides f(x).

Let *E* be a field extension of a field *F*, and let $\alpha \in E$ be algebraic over *F*. The unique monic polynomial p(x) discussed above is called the irreducible polynomial for α over *F* or the minimal polynomial for α over *F*, and it is denoted $irr(\alpha, F)$. The degree of the polynomial $irr(\alpha, F)$ is called the degree of α over *F* and this number is denote by $deg(\alpha, F)$.

Example 1: $irr(\sqrt{2}, \mathbb{Q}) = x^2 | 2$. (why?) $\sqrt{2}$ is algebraic over \mathbb{Q} of degree 2.

Example 2: $irr(\sqrt{1+\sqrt{3}}, \mathbb{Q}) = x^4 - 2x^2 - 2$. (why?) $\sqrt{1+\sqrt{3}}$ is algebraic over \mathbb{Q} of degree 4.

Let *E* be an extension field of a field *F*, and let $\alpha \in E$. Let ϕ_{α} be the evaluation homomorphism of *F*[*x*] into *E* with $\phi_{\alpha}(a) = a$ for $a \in F$ and $\phi_{\alpha}(x) = \alpha$. We consider two cases:

- Suppose α is algebraic over F. Then the kernel of φ_α is < irr(α, F) >. Since < irr(α, F) > is a maximal ideal of F[x], therefore, F[x]/ < irr(α, F) > is a field and is isomorphic to the image φ_α(F[x]) in E. This subfield is the smallest subfield of E containing F and α. We denote this field by F(α).
- Suppose α is transcendental over F. Then φ_α gives an isomorphism of F[x] with a subdomain of E. Thus in this case φ_α(F[x]) is not a field but an integral domain that we denote by F[a]. Now, E contains a field of quotients of F[a], which is thus the smallest subfield of E containing F and α. As before, we also denote this field by F(α).

伺 ト イヨ ト イヨト

Example: Since π is transcendental over \mathbb{Q} , the field $\mathbb{Q}(\pi)$ is isomorphic to the field $\mathbb{Q}(x)$ of rational functions over \mathbb{Q} in the indeterminate x. Thus from a structural viewpoint, an element that is transcendental over a field F behaves as though it were an indeterminate over F.

An extension field *E* of a field *F* will be called a simple extension of *F* if $E = F(\alpha)$ for some $\alpha \in E$.

Theorem: Let $E = F(\alpha)$ be a simple extension of a field F with α algebraic over F. Let $n = deg(\alpha, F)$. Then every $\beta \in F(\alpha)$ can be uniquely expressed in the form

$$\beta = b_0 + b_1 \alpha + b_2 \alpha^2 + \dots + b_{n-1} \alpha^{n-1}$$

with $b_i \in F$.

Let *E* be an extension field of *F* and let $\alpha \in E$ be algebraic over *F*. If $deg(\alpha, F) = n$, then $F(\alpha)$ is a vector space over *F* with dimension *n* and basis $\{a, \alpha, \alpha^2, \ldots, \alpha^{n-1}\}$. Furthermore, every element $\beta \in F(a)$ is algebraic over *F* and $deg(\beta, F) \leq deg(\alpha, F)$

Example: The polynomial $p(x) = x^2 + x + 1$ in $\mathbb{Z}_2[x]$ is irreducible over \mathbb{Z}_2 . (why?) We know that there is an extension field E of \mathbb{Z}_2 containing a zero α of $x^2 + x + 1$. This extension $\mathbb{Z}_2(\alpha)$ has as elements $0 + 0\alpha = 0$, $1 + 0\alpha = 1$, $0 + 1\alpha = \alpha$, and $1 + 1\alpha = 1 + \alpha$. This is a field with 4 elements, and for the multiplication one need to see that $\alpha^2 = -\alpha - 1 = \alpha + 1$. (why?)

We have seen before that $\mathbb{R}[x]/ < x^2 + 1 >$ is an extension field of $\mathbb{R}.$ Consider

$$\alpha = x + < x^2 + 1 >$$

Then $\mathbb{R}(\alpha) = \mathbb{R}[x]/\langle x^2 + 1 \rangle$ and it consists of all elements of the form $a + b\alpha$ for $a, b \in \mathbb{R}$. But since $\alpha^2 + 1 = 0$, we see that α plays the role of $i \in \mathbb{C}$, and $a + b\alpha$ plays the role of $a + bi \in \mathbb{C}$. Hence, we can consider \mathbb{C} as the extension field of \mathbb{R} :

$$\mathbb{C}\simeq\mathbb{R}(\alpha)$$

The number $i \in \mathbb{C}$ has minimal polynomial $x^2 + 1$ over \mathbb{R} and $\mathbb{C} = \mathbb{R}(i)$. Thus for every complex number β , $deg(\beta, \mathbb{R}) \leq 2$. This implies that every complex number that is not a real number is a zero of some irreducible polynomial of degree two in R[x].