Abstract Algebra Field Extensions Cont.

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

Let F be a field and let f(x) be a nonconstant polynomial in F[x] and take p(x) to be an irreducible factor of f(x) in F[x].

Consider *E* to be equal to F[x]/ < p(x) >. *E* is a field (why?) no two different elements of *F* are in the same coset of E = F[x]/ < p(x) >.

From this we can deduce that we may consider F to be (isomorphic to) a subfield of E.

Now let α be the coset $x + \langle p(x) \rangle$ in *E*. Considering the evaluation homomorphism $\phi_{\alpha} : F[x] \to E$, we have $\phi_{\alpha}(f(x)) = 0$ (why?)

This means that α is a zero of f(x) in E. This construction is known as Kronecker's Theorem.

伺 ト イヨ ト イヨト

Example: Let $F = \mathbb{R}$, and let $f(x) = x^2 + I$, which has no zeros in \mathbb{R} and thus is irreducible over \mathbb{R} . Thus $\langle x^2 + 1 \rangle$ is a maximal ideal in R[x], so $E = R[x]/\langle x^2 + 1 \rangle$ is a field. Identifying $r \in \mathbb{R}$ with $r + \langle x^2 + 1 \rangle \in E$, we can view R as a subfield of E. Let

$$\alpha = x + < x^2 + 1 >$$

We have

 $\alpha^2 + 1 = (x + \langle x^2 + 1 \rangle)^2 + (1 + \langle x^2 + 1 \rangle) = (x^2 + 1) + \langle x^2 + 1 \rangle = 0$

Hence α is a zero of f(x) in E. One can also show that $E \simeq \mathbb{C}$.

An element α of an extension field E of a field F is algebraic over F if $f(\alpha) = 0$ for some nonzero $f(x) \in F[x]$. If α is not algebraic over F, then α is called transcendental over F.

Here again, like the case of irreducible polynomial **over a field** F, when talking about an algebraic element, we need to also specify the field.

For instance consider \mathbb{C} as an extension of \mathbb{Q} . $\sqrt{2}$ and *i* are algebraic over \mathbb{Q} but π and *e* (which is not very easy to prove) are transcendental over \mathbb{Q} (but algebraic over \mathbb{R} and \mathbb{C} (why?)).

Let *E* be an extension field of a field *F* and let $\alpha \in E$. Let $\phi_{\alpha} : F[x] \to E$ be the evaluation homomorphism of F[x] into *E* such that $\phi_{\alpha}(a) = a$ for $a \in F$ and $\phi_{\alpha}(x) = 0$. Then α is transcendental over *F* if and only if ϕ_{α} gives an isomorphism of F[x] with a subdomain of *E*, that is, if and only if ϕ_{α} is a one-to-one map.

This is because the element α is transcendental over F if and only if $f(\alpha) \neq 0$ for all nonzero $f(x) \in F[x]$, which is true (by definition) if and only if $\phi_{\alpha}(f(x)) \neq 0$ for all nonzero $f(x) \in F[x]$, which is true if and only if ker $(\phi_{\alpha}) = \{0\}$, that is, if and only if ϕ_{α} is a one-to-one map.