Abstract Algebra

Factorization

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

Let E and F be fields, with $F \leq E$. We say that $f(x) \in F[x]$ factors in $F[x]$, if $f(x)=g(x) h(x)$ for $g(x), h(x) \in F[x]$.

Let $\alpha \in E$. For the evaluation homomorphism ϕ_{α}, We have

$$
\phi_{\alpha}(f(x))=\phi_{\alpha}(g(x) h(x))=\phi_{\alpha}(g(x)) \phi_{\alpha}(h(x))=g(\alpha) h(\alpha)
$$

Thus if $\alpha \in E$, then $f(\alpha)=0$ if and only if either $g(\alpha)=0$ or $h(\alpha)=0$. Hence the attempt to find a zero of $f(x)$ reduces to the problem of finding a zero of a factor of $f(x)$. This is one reason why it is useful to study factorization of polynomials.

Division Algorithm for $\mathrm{F}[\mathrm{x}]$

Let

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

and

$$
g(x)=b_{m} x^{m}+b_{m-1} x^{m-1}+\cdots+b_{0}
$$

be two elements of $F[x]$, with a_{n} and b_{m} both nonzero elements of F and $m>0$. Then there are unique polynomials $q(x)$ and $r(x)$ in $F[x]$ such that $f(x)=g(x) q(x)+r(x)$, where either $r(x)=0$ or the degree of $r(x)$ is less than the degree m of $g(x)$.

Example: For $f(x)=x^{4}-3 x^{3}+2 x^{2}+4 x-1 \in \mathbb{Z}_{5}[x]$ and $g(x)=x^{2}-2 x+3$, we have $q(x)=x^{2}-x-3$ and $r(x)=x+3$. Here $\operatorname{deg}(r(x))=1<\operatorname{deg}(g(x))=2$ and one can check that $x^{4}-3 x^{3}+2 x^{2}+4 x-1=\left(x^{2}-2 x+3\right)\left(x^{2}-x-3\right)+(x+3)$

For the details of algorithm, look at Part 6 Section 28 of the textbook.

Factor Theorem and Irreducible Polynomials

An element $a \in F$ is a zero of $f(x) \in F[x]$ if and only if $(x-a)$ is a factor of $f(x)$ in $F[x]$.

As a corollary one can conclude that a nonzero polynomial $f(x) \in F[x]$ of degree n can have at most n zeros in a field F.

A nonconstant polynomial $f(x) \in F[x]$ is called irreducible over F or an irreducible polynomial in $F[x]$ if $f(x)$ cannot be expressed as a product $g(x) h(x)$ of two polynomials $g(x)$ and $h(x)$ in $F[x]$ both of lower degree than the degree of $f(x)$. If $f(x) \in F[x]$ is a nonconstant polynomial that is not irreducible over F, then $f(x)$ is called reducible over F.

Note that we emphasize on the field because a polymomial $f(x)$ may be irreducible over F, but may not be irreducible if viewed over a larger field E containing F.

Irreducible Polynomials: Examples

Example 1: $f(x)=x^{2}-2$ viewed in $\mathbb{Q}[x]$ has no zeros in \mathbb{Q} (why?) and hence is irreducible over \mathbb{Q}. But if we consider $f(x)=x^{2}-2 \in \mathbb{R}[x]$ then it factors as $f(x)=(x-\sqrt{2})(x+\sqrt{2})$.
Example 2: $f(x)=x^{2}+1 \in \mathbb{R}[x]$ is irreducible but $f(x)=x^{2}+1 \in \mathbb{C}[x]$ is reducible. (why?)
Example 3: $f(x)=x^{3}+3 x+2 \in \mathbb{Z}_{5}[x]$ is irreducible over $\mathbb{Z}_{5}[x]$ because no element of $\mathbb{Z}_{5}[x]$ is a zero of $f(x)$.
In general we can say that if $f(x)$ is of degree 2 or 3 , then $f(x)$ is reducible over F if and only if it has a zero in F.

Factorization in F[x]

For $f(x), g(x) \in F[x]$ we say that $g(x)$ divides $f(x)$ in $F[x]$ if there exists $q(x) \in F[x]$ such that $f(x)=g(x) q(x)$.

Let $p(x)$ be an irreducible polynomial in $F[x]$. If $p(x)$ divides $r(x) s(x)$ for $r(x), s(x) \in F[x]$, then either $p(x)$ divides $r(x)$ or $p(x)$ divides $s(x)$. By induction we can generalize this result to product of finitely many polynomials.

Uniqueness Theorem: If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in $F[x]$ into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit (that is, nonzero constant) factors in F.

