Abstract Algebra Factorization

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

Let *E* and *F* be fields, with $F \le E$. We say that $f(x) \in F[x]$ factors in F[x], if f(x) = g(x)h(x) for g(x), $h(x) \in F[x]$.

Let $\alpha \in E$. For the evaluation homomorphism ϕ_{α} , We have

$$\phi_{\alpha}(f(x)) = \phi_{\alpha}(g(x)h(x)) = \phi_{\alpha}(g(x))\phi_{\alpha}(h(x)) = g(\alpha)h(\alpha)$$

Thus if $\alpha \in E$, then $f(\alpha) = 0$ if and only if either $g(\alpha) = 0$ or $h(\alpha) = 0$. Hence the attempt to find a zero of f(x) reduces to the problem of finding a zero of a factor of f(x). This is one reason why it is useful to study factorization of polynomials.

Division Algorithm for F[x]

Let

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

and

$$g(x) = b_m x^m + b_{m-1} x^{m-1} + \dots + b_0$$

be two elements of F[x], with a_n and b_m both nonzero elements of F and m > 0. Then there are unique polynomials q(x) and r(x) in F[x] such that f(x) = g(x)q(x) + r(x), where either r(x) = 0 or the degree of r(x) is less than the degree m of g(x).

Example: For $f(x) = x^4 - 3x^3 + 2x^2 + 4x - 1 \in \mathbb{Z}_5[x]$ and $g(x) = x^2 - 2x + 3$, we have $q(x) = x^2 - x - 3$ and r(x) = x + 3. Here deg(r(x)) = 1 < deg(g(x)) = 2 and one can check that $x^4 - 3x^3 + 2x^2 + 4x - 1 = (x^2 - 2x + 3)(x^2 - x - 3) + (x + 3)$

伺 と く ヨ と く ヨ と

For the details of algorithm, look at Part 6 Section 28 of the textbook.

An element $a \in F$ is a zero of $f(x) \in F[x]$ if and only if (x - a) is a factor of f(x) in F[x].

As a corollary one can conclude that a nonzero polynomial $f(x) \in F[x]$ of degree *n* can have at most *n* zeros in a field *F*.

A nonconstant polynomial $f(x) \in F[x]$ is called irreducible **over** F or an irreducible polynomial in F[x] if f(x) cannot be expressed as a product g(x)h(x) of two polynomials g(x) and h(x) in F[x] both of lower degree than the degree of f(x). If $f(x) \in F[x]$ is a nonconstant polynomial that is not irreducible over F, then f(x) is called reducible over F.

Note that we emphasize on the field because a polymomial f(x) may be irreducible over F, but may not be irreducible if viewed over a larger field E containing F.

伺 ト イヨト イヨト

Example 1: $f(x) = x^2 - 2$ viewed in $\mathbb{Q}[x]$ has no zeros in \mathbb{Q} (why?) and hence is irreducible over \mathbb{Q} . But if we consider $f(x) = x^2 - 2 \in \mathbb{R}[x]$ then it factors as $f(x) = (x - \sqrt{2})(x + \sqrt{2})$.

Example 2: $f(x) = x^2 + 1 \in \mathbb{R}[x]$ is irreducible but $f(x) = x^2 + 1 \in \mathbb{C}[x]$ is reducible. (why?)

Example 3: $f(x) = x^3 + 3x + 2 \in \mathbb{Z}_5[x]$ is irreducible over $\mathbb{Z}_5[x]$ because no element of $\mathbb{Z}_5[x]$ is a zero of f(x).

In general we can say that if f(x) is of degree 2 or 3, then f(x) is reducible over F if and only if it has a zero in F.

For f(x), $g(x) \in F[x]$ we say that g(x) divides f(x) in F[x] if there exists $q(x) \in F[x]$ such that f(x) = g(x)q(x).

Let p(x) be an irreducible polynomial in F[x]. If p(x) divides r(x)s(x) for r(x), $s(x) \in F[x]$, then either p(x) divides r(x) or p(x) divides s(x). By induction we can generalize this result to product of finitely many polynomials.

Uniqueness Theorem: If F is a field, then every nonconstant polynomial $f(x) \in F[x]$ can be factored in F[x] into a product of irreducible polynomials, the irreducible polynomials being unique except for order and for unit (that is, nonzero constant) factors in F.

▲ □ ▶ ▲ □ ▶ ▲