Abstract Algebra Abelian Group, Finite/Infinite Group

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

(G,*) is called an Abelian group if for every element $g, g' \in G$ we have g * g' = g' * g.

 $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{Q}\setminus\{0\},.)$, $(\mathbb{R},+)$ are Abelian groups.

(G,*) is called an Abelian group if for every element $g, g' \in G$ we have g * g' = g' * g.

 $(\mathbb{Z},+),$ ($\mathbb{Q},+),$ ($\mathbb{Q}\setminus\{0\},.),$ ($\mathbb{R},+)$ are Abelian groups.

Consider the set $GL_2(\mathbb{R})$ of all 2×2 **invertible** matrices with real elements. This set together with matrix operation is a group but not an Abelian one (why?)

(G,*) is called a Finite group if $|G| < \infty$ (or G has finitely many elements), otherwise it is called an infinite group.

(G,*) is called a Finite group if $|G| < \infty$ (or G has finitely many elements), otherwise it is called an infinite group.

Consider the set \mathbb{Z}_n of all integer numbers modulo n. This set with mod n addition is a finite group of n elements.

(G,*) is called a Finite group if $|G| < \infty$ (or G has finitely many elements), otherwise it is called an infinite group.

Consider the set \mathbb{Z}_n of all integer numbers modulo n. This set with mod n addition is a finite group of n elements.

 \mathbb{Z}_n with mod *n* multiplication is a group iff *n* is a prime number.

For further properties and examples of groups, look at Part 1 Section 4 of the textbook.

For finite groups, one can determine the binary operation by structuring a matrix like table, for which the intersection of each row and column gives the corresponding result of operation.

Examples of such tables can be found in Part 1 Section 2 of the textbook.

For finite groups, one can determine the binary operation by structuring a matrix like table, for which the intersection of each row and column gives the corresponding result of operation.

Examples of such tables can be found in Part 1 Section 2 of the textbook.

Construct the tables for groups with n = 2, 3, 4 and 5 elements. How many different 'choices' for each n you can find? Are all of these groups Abelian?