# Abstract Algebra <br> Polynomial Rings and Field of Rational Functions 

# ThinkBS: Basic Sciences in Engineering Education 

Kadir Has University, Turkey

## Rings of Polynomials

Let $R$ be a ring. A polynomial $f(x)$ with coefficients in $R$ is an infinite formal sum

$$
\sum_{i=0}^{\infty} a_{i} x^{i}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots
$$

where $a_{i} \in R$ and for all but a finite number of values of $i, a_{i}=0$. The $a_{i}$ are called coefficients of $f(x)$. If for some $i \geq 0$ it is true that $a_{i} \neq 0$, the largest such value of $i$ is called the degree of $f(x)$.
If all $a_{i}=0$, then the degree of $f(x)$ is undefined although is it useful sometimes to define it as $-\infty$.

The sum is formal in the sense that we use $x$ to pinpoint the place if $a_{i}$ 's (this means that $\sum_{i=0}^{\infty} a_{i} x^{i}$ is just another notation for $\left.\left(a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right)\right)$ and the problem of convergence is thus irrelevant.

## Rings of Polynomials

If $a_{i}=0$ for $i>n$, then we denote $f(x)$ by $a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ and call it a polynomial. Also, if $R$ has unity $1 \neq 0$, we will write a term $1 x^{k}$ in such a sum as $x^{k}$ and also omit all the terms with coefficient 0 . a polynomial having 1 as the coefficient of the highest power of $x$ appearing is called a monic polynomial.
The set $R[x]$ of all polynomials in an indeterminate $x$ with coefficients in a ring $R$ is a ring under polynomial addition and multiplication defined below. If $R$ is commutative, then so is $R[x]$, and if $R$ has unity $1 \neq 0$, then 1 is also unity for $R[x]$.
If $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$ and $g(x)=\sum_{i=0}^{\infty} b_{i} x^{i}$ then

$$
f(x)+g(x)=\sum_{i=0}^{\infty}\left(a_{i}+b_{i}\right) x^{i}
$$

and

$$
f(x) g(x)=\sum_{i=0}^{\infty}\left(\sum_{k=0}^{i} a_{k} b_{i-k}\right) x^{i}
$$

## Rings of Polynomials of Several Variable

If $R$ is a ring and $x$ and $y$ are two indeterminates, then we can form the ring $(R[x])[y]$, that is, the ring of polynomials in $y$ with coefficients that are polynomials in $x .(R[x])[y]$ is naturally isomorphic to $(R[y])[x]$ (why?) and we refer to it as $R[x, y]$.
$R[x, y]$ is called the ring of polynomials in two indeterminates $x$ and $y$ with coefficients in $R$. The ring $R\left[x_{1}, \ldots, x_{n}\right]$ of polynomials in the $n$ indeterminates $x_{i}$ with coefficients in $R$ is similarly defined.

One can show that if $D$ is an integral domain, then so is $D[x]$. In particular, if $F$ is a field, then $F[x]$ is an integral domain but not a field, because $x$ is not a unit in $F[x]$.

Consider the integral domain $F[x]$ over a field $F$. The field of quotients of $F[x]$ is denoted by $F(x)$ and its elements are in the form of $\frac{f(x)}{g(x)}$ such that $g(x) \neq 0$ (A polynomial is nonzero if at least one of the coefficients are nonzero).

We similarly define $F\left(x_{1}, \ldots, x_{n}\right)$ to be the field of quotients of $F\left[x_{1}, \ldots, x_{n}\right]$. This field $F\left(x_{1}, \ldots, x_{n}\right)$ is called the field of rational functions in $n$ indeterminates over $F$. These fields play a very important role in algebraic geometry.

