Abstract Algebra Exact and Short Exact Sequences

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Abstract Algebra

The pair of homomorphisms $X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z$ is said to be exact (at Y) if $image(\alpha) = ker(\beta)$.

A sequence $\cdots \rightarrow X_{n-1} \rightarrow X_n \rightarrow X_{n+1} \rightarrow \ldots$ of homomorphisms is said to be an exact sequence if it is exact at every X_n between a pair of homomorphisms.

With this definition we can state that if A, B and C are R-modules over some ring R, then

- The sequence $0 \to A \xrightarrow{\alpha} B$ is exact (at A) if and only if α is injective.
- The sequence $B \xrightarrow{\beta} C \to 0$ is exact (at C) if and only if β is surjective.

Short Exact Sequences

The sequence $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ is exact if and only if α is injective, β is surjective, and $image(\alpha) = ker(\beta)$. In this case we say that B is an extension of C by A.

The exact sequence $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ is called a short exact sequence.

Note that any exact sequence can be written as a succession of short exact sequences since to say

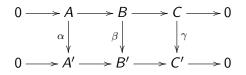
$$X \xrightarrow{\alpha} Y \xrightarrow{\beta} Z$$

is exact at Y is the same as saying that the sequence

$$0 \rightarrow \alpha(X) \xrightarrow{\alpha} Y \xrightarrow{\beta} Y/ker(\beta) \rightarrow 0$$

is a short exact sequence.

Let $\alpha \text{, }\beta$ and γ be a homomorphism of short exact sequences



Then

- If α and γ is injective (one-to-one), then so is β .
- If α and γ is surjective (onto), then so is β .
- If α and γ are isomorphisms, then so is β . In this case we call the two sequences isomorphic.