Abstract Algebra Module Homomorphisms and Module of Homomorphisms

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Abstract Algebra

Let *R* be a ring and let *M* and *N* be *R*-modules. A map $f: M \rightarrow N$ is an *R*-module homomorphism if it respects the *R*-module structures of *M* and *N*, i.e.,

•
$$f(x + y) = f(x) + f(y)$$
 for all $x, y \in M$ and

•
$$f(rx) = rf(x)$$
 for all $x \in M$ and $r \in R$.

If M and N are two R-modules we define $Hom_R(M, N)$ to be the set of all R- module homomorphisms from M into N.

A one-to-one and onto homomorphism will be called an isomorphism and if there is an isomorphism between two modules M and N, we say that they are isomorph and show it by $M \simeq N$.

Kernel and Image of an R-module can be defined as similarly to the case of groups and rings.

Example 1: For the ring $R = \mathbb{Z}$ the action of ring elements (integers) on any \mathbb{Z} -module amounts to just adding and subtracting within the (additive) abelian group structure of the module so that in this case, the second condition of a homomorphism is implied by the first condition.

for instance f(3x) = f(x + x + x) = f(x) + f(x) + f(x) = 3f(x).

Hence \mathbb{Z} -module homomorphisms are the same as abelian group homomorphisms. Note that also \mathbb{Z} -modules are the same as abelian groups.

Example 2: Let *R* be a ring, let $n \in \mathbb{Z}^+$ and let $M = R^n$. For each $i \in \{1, 2, ..., n\}$ the projection map

$$\pi_i: \mathbb{R}^n \to \mathbb{R}$$
 by $\pi_i(x_1, x_2, \dots, x_n) = x_i$

is an onto R-module homomorphism with kernel equal to the submodule of n-tuples which have a zero in position i.

Example 3: If *R* is a field, *R*-module homomorphisms are called linear transformations.

Let f, g be elements of $Hom_R(M, N)$. Define f + g by

$$(f+g)(m) = f(m) + g(m)$$
 for all $m \in M$

Then $f + g \in Hom_R(M, N)$ and with this operation $Hom_R(M, N)$ is an abelian group. If R is a commutative ring then for $r \in R$ define rf by

$$(rf)(m) = rf(m)$$
 for all $m \in M$

Then $rf \in Hom_R(M, N)$ and with this action of the commutative ring R the abelian group $Hom_R(M, N)$ is an R-module.

With addition as above and multiplication defined as function composition, $Hom_R(M, M)$ is a ring with 1 called the endomorphism ring of M and denoted by $End_R(M)$.