Abstract Algebra
 Strict Skew Fields, Quaternions

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

Remember that a ring R with a unity is called a division ring (or skew field) if every non-zero element is unit and we called a commutative division ring a field. We have seen examples of fields such as $\mathbb{Z}_{p}(p \in \mathbb{Z}$ is prime) or \mathbb{Q}, \mathbb{R} and \mathbb{C}.

We also called a noncommutative division ring as a strictly skew field, but we haven't yet seen any example of such rings. This is because, first:

Strict Skew Fields

Remember that a ring R with a unity is called a division ring (or skew field) if every non-zero element is unit and we called a commutative division ring a field. We have seen examples of fields such as $\mathbb{Z}_{p}(p \in \mathbb{Z}$ is prime) or \mathbb{Q}, \mathbb{R} and \mathbb{C}.

We also called a noncommutative division ring as a strictly skew field, but we haven't yet seen any example of such rings. This is because, first:

Wedderburn's Theorem

Every finite division ring is a field.
and second:

In Quest of Paradise: Quaternions

We know that complex numbers are just real numbers but in two dimensions: $\mathbb{C}=\mathbb{R} \times \mathbb{R}$ and it is a field addition and multiplication defined as $(a, b)+(c, d)=(a+c, b+d)$ and $(a, b) .(c, d)=(a c-b d, a d+b c)$.

If we show $(0,1)$ by i, then we have complex numbers as we know: $(a, b)=a+b i$

Mathematicians like Gauss and Hamilton, in 19th century were trying to make $\mathbb{R}^{3}=\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ into a field, a task proofed later to be impossible!

In Quest of Paradise: Quaternions

Assume we introduce a second object j to extend the complex numbers to the $3 D$-space and consider the triplets $a+b i+c j$ (with a, b, c real), we should first of all see what $i j$ is.

Let $i j=\alpha+\beta i+\gamma j$. Then, $i(i j)=i(\alpha+\beta i+\gamma j)=\alpha i-\beta+\gamma i j=$ $\alpha i-\beta+\gamma(\alpha+\beta i+\gamma j)=(\alpha \gamma-\beta)+(\alpha+\beta \gamma) i+\gamma^{2} j$.

On the other hand, $i(i j)=(i i) j=-j$ (assuming associativity holds). By comparing the two expressions, we get $c^{2}=-1$ for a real c, which is impossible!

In Quest of Paradise: Quaternions

It seems somehow, that if we want to multiply the triplets, ij requires a separate room for itself. Let us allocate it and call it k. Then we must admit quartets in form $a+b i+c j+d k$. To multiply triplets, we need quartets!

But how to multiply them, and to which price?
Their multiplication rules were carved by Hamilton on a stone of a bridge in Dublin in 1843: $i^{2}=j^{2}=k^{2}=i j k=-1$. Now ij is k as planned: $(i j k) k=-k$, so that $i j=k$ since $k^{2}=-1$. But what is $j i$? If we multiply $i j k=-1$ with $j i$, we get $j i(i j k)=-j i$ and hence $j i=-k$. Similarly, $j k=-k j=i$ and $k i=-i k=j$.

The price is the loss of commutativity! But we have found our paradise of noncommutative skew field!

Quaternions

Consider $\mathbb{H}=\mathbb{R}^{4}$ and rename the following elements as following:
$1=(1,0,0,0) \quad i=(0,1,0,0)$
$j=(1,0,0,0) \quad k=(0,1,0,0)$
With this notation $(a, b, c, d)=a+b i+c j+d k$.
Also define the followings:

$$
\begin{gathered}
1 a=a 1=a \text { for all } a \in \mathbb{H} \\
i^{2}=j^{2}=k^{2}=-1 \\
i j=k, j k=i, k i=j, j i=-k, k j=-i, i k=-j
\end{gathered}
$$

Quaternions

We also define addition by

$$
\begin{aligned}
& \left(a_{1}+a_{2} i+a_{3} j+a_{4} k\right)+\left(b_{1}+b_{2} i+b_{3} j+b_{4} k\right) \\
& =\left(a_{1}+b_{1}\right)+\left(a_{2}+b_{2}\right) i+\left(a_{3}+b_{3}\right) j+\left(a_{4}+b_{4}\right) k
\end{aligned}
$$

and multiplication by

$$
\begin{aligned}
& \left(a_{1}+a_{2} i+a_{3} j+a_{4} k\right) \cdot\left(b_{1}+b_{2} i+b_{3} j+b_{4} k\right) \\
& =\left(a_{1} b_{1}-a_{2} b_{2}-a_{3} b_{3}-a_{4} b_{4}\right) \\
& +\left(a_{1} b_{2}+a_{2} b_{1}+a_{3} b_{4}-a_{4} b_{3}\right) i \\
& +\left(a_{1} b_{3}-a_{2} b_{4}+a_{3} b_{1}+a_{4} b_{2}\right) j \\
& +\left(a_{1} b_{4}+a_{2} b_{3}-a_{3} b_{2}+a_{4} b_{1}\right) k .
\end{aligned}
$$

With this definitions, \mathbb{H} is a noncommutative skew field! (why?)

