Abstract Algebra
 Divisors of Zero and Integral Domains

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

If a and b are two nonzero elements of a ring R such that $a b=0$, then a and b are divisors of 0 (or 0 divisors).

Example 1: In $\mathbb{Z}_{10}, 3$ is a unit: $3.7=21=1(\bmod 10)$.
In the same ring, 4 is a divisor of zero: $4.5=20=0(\bmod 10)$.

If a and b are two nonzero elements of a ring R such that $a b=0$, then a and b are divisors of 0 (or 0 divisors).

Example 1: In $\mathbb{Z}_{10}, 3$ is a unit: $3.7=21=1(\bmod 10)$. In the same ring, 4 is a divisor of zero: $4.5=20=0(\bmod 10)$.

Example 2: $\ln M_{2}(\mathbb{R}),\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)$ is a unit:
$\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right) \cdot\left(\begin{array}{cc}1 & -1 / 2 \\ 0 & 1 / 2\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. In the same ring, $\left(\begin{array}{cc}1 & -1 \\ -2 & 2\end{array}\right)$ is a divisor of zero (why?)

If a and b are two nonzero elements of a ring R such that $a b=0$, then a and b are divisors of 0 (or 0 divisors).

Example 1: In $\mathbb{Z}_{10}, 3$ is a unit: $3.7=21=1(\bmod 10)$. In the same ring, 4 is a divisor of zero: $4.5=20=0(\bmod 10)$.

Example 2: $\ln M_{2}(\mathbb{R}),\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right)$ is a unit:
$\left(\begin{array}{ll}1 & 1 \\ 0 & 2\end{array}\right) \cdot\left(\begin{array}{cc}1 & -1 / 2 \\ 0 & 1 / 2\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. In the same ring, $\left(\begin{array}{cc}1 & -1 \\ -2 & 2\end{array}\right)$ is
a divisor of zero (why?)
Example 3: $a \in \mathbb{Z}_{n}$ is a unit iff $\operatorname{gcd}(a, n)=1$ otherwise it is a divisor of zero (why?)

Integral Domains

An integral domain D is a commutative ring with unity $1 \neq 0$ and containing no zero divisors.

Integral Domains

An integral domain D is a commutative ring with unity $1 \neq 0$ and containing no zero divisors.

Example 1: $(\mathbb{Z},+,$.$) is an integral domain but not a field.$ $(\mathbb{Q},+,$.$) and (\mathbb{R},+,$.$) are fields.$

Integral Domains

An integral domain D is a commutative ring with unity $1 \neq 0$ and containing no zero divisors.

Example 1: $(\mathbb{Z},+,$.$) is an integral domain but not a field.$ $(\mathbb{Q},+,$.$) and (\mathbb{R},+,$.$) are fields.$

Example 2: For a prime $p \in \mathbb{Z}, \mathbb{Z}_{p}$ is an integral domain (why?). Is it a field?

Integral Domains

An integral domain D is a commutative ring with unity $1 \neq 0$ and containing no zero divisors.

Example 1: $(\mathbb{Z},+,$.$) is an integral domain but not a field.$ $(\mathbb{Q},+,$.$) and (\mathbb{R},+,$.$) are fields.$

Example 2: For a prime $p \in \mathbb{Z}, \mathbb{Z}_{p}$ is an integral domain (why?). Is it a field?

Example 3: In an integral domain (or more generally in a ring with no zero divisors) the cancellation law hold:

$$
(a b=a c \text { and } a \neq 0) \text { iff } b=c
$$

Integral Domains

Example 4: An integral domain for which all of its elements (except 0 of course!) are unit, is a field.

Example 5: Every finite integral domain is a field. (why?)
For more detail, look at part 3, Sections 18 and 19 of the textbook.

