Abstract Algebra Divisors of Zero and Integral Domains

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Abstract Algebra

If a and b are two nonzero elements of a ring R such that ab = 0, then a and b are **divisors of** 0 (or 0 divisors).

Example 1: In \mathbb{Z}_{10} , 3 is a unit: $3.7 = 21 = 1 \pmod{10}$. In the same ring, 4 is a divisor of zero: $4.5 = 20 = 0 \pmod{10}$. If a and b are two nonzero elements of a ring R such that ab = 0, then a and b are **divisors of** 0 (or 0 divisors).

Example 1: In \mathbb{Z}_{10} , 3 is a unit: $3.7 = 21 = 1 \pmod{10}$. In the same ring, 4 is a divisor of zero: $4.5 = 20 = 0 \pmod{10}$.

Example 2: In
$$M_2(\mathbb{R})$$
, $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ is a unit:
 $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1/2 \\ 0 & 1/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. In the same ring, $\begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}$ is a divisor of zero (why?)

If a and b are two nonzero elements of a ring R such that ab = 0, then a and b are **divisors of** 0 (or 0 divisors).

Example 1: In \mathbb{Z}_{10} , 3 is a unit: $3.7 = 21 = 1 \pmod{10}$. In the same ring, 4 is a divisor of zero: $4.5 = 20 = 0 \pmod{10}$.

Example 2: In
$$M_2(\mathbb{R})$$
, $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ is a unit:
 $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 1 & -1/2 \\ 0 & 1/2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. In the same ring, $\begin{pmatrix} 1 & -1 \\ -2 & 2 \end{pmatrix}$ is a divisor of zero (why?)

Example 3: $a \in \mathbb{Z}_n$ is a unit iff gcd(a, n) = 1 otherwise it is a divisor of zero (why?)

Example 1: $(\mathbb{Z}, +, .)$ is an integral domain but not a field. $(\mathbb{Q}, +, .)$ and $(\mathbb{R}, +, .)$ are fields.

Example 1: $(\mathbb{Z}, +, .)$ is an integral domain but not a field. $(\mathbb{Q}, +, .)$ and $(\mathbb{R}, +, .)$ are fields.

Example 2: For a prime $p \in \mathbb{Z}$, \mathbb{Z}_p is an integral domain (why?). Is it a field?

Example 1: $(\mathbb{Z}, +, .)$ is an integral domain but not a field. $(\mathbb{Q}, +, .)$ and $(\mathbb{R}, +, .)$ are fields.

Example 2: For a prime $p \in \mathbb{Z}$, \mathbb{Z}_p is an integral domain (why?). Is it a field?

Example 3: In an integral domain (or more generally in a ring with no zero divisors) the cancellation law hold:

$$(ab = ac and a \neq 0)$$
 iff $b = c$

Example 4: An integral domain for which all of its elements (except 0 of course!) are unit, is a field.

Example 5: Every finite integral domain is a field. (why?)

For more detail, look at part 3, Sections 18 and 19 of the textbook.