Abstract Algebra Definition of Group

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Abstract Algebra

- A Group is a set G with a binary operation (usually shown as *) $*: G \times G \rightarrow G$ such that satisfies the followings axioms:
 - For every element $g_1, g_2, g_3 \in G$, $(g_1 * g_2) * g_3 = g_1 * (g_2 * g_3)$ (associativity of *)

- A Group is a set G with a binary operation (usually shown as *) $*: G \times G \rightarrow G$ such that satisfies the followings axioms:
 - For every element $g_1, g_2, g_3 \in G$, $(g_1 * g_2) * g_3 = g_1 * (g_2 * g_3)$ (associativity of *)
 - 2 There is an element e in G such that for all $g \in G$, g * e = e * g = g (identity element for *)

- A Group is a set G with a binary operation (usually shown as *) $*: G \times G \rightarrow G$ such that satisfies the followings axioms:
 - For every element g_1 , g_2 , $g_3 \in G$, $(g_1 * g_2) * g_3 = g_1 * (g_2 * g_3)$ (associativity of *)
 - 2 There is an element e in G such that for all $g \in G$, g * e = e * g = g (identity element for *)
 - For each element g ∈ G, there exists an element g' ∈ G such that g * g' = g' * g = e (inverse of g with respect to *)

• $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{Q} \setminus \{0\}, .)$, $(\mathbb{R}, +)$ are all examples of groups.

- $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{Q} \setminus \{0\}, .)$, $(\mathbb{R}, +)$ are all examples of groups.
- *G* must be closed under *.

- (Z, +), (Q, +), (Q \ {0}, .), (R, +) are all examples of groups.
- G must be closed under *.
- Associativity of * means that the order in which operation is applied to elements is irrelevant and we will end up with the same result.

- $(\mathbb{Z}, +)$, $(\mathbb{Q}, +)$, $(\mathbb{Q} \setminus \{0\}, .)$, $(\mathbb{R}, +)$ are all examples of groups.
- G must be closed under *.
- Associativity of * means that the order in which operation is applied to elements is irrelevant and we will end up with the same result.
- Identity element of a group is unique (which we will show by 0 or 1 depending on the context).

- (Z, +), (Q, +), (Q \ {0}, .), (R, +) are all examples of groups.
- G must be closed under *.
- Associativity of * means that the order in which operation is applied to elements is irrelevant and we will end up with the same result.
- Identity element of a group is unique (which we will show by 0 or 1 depending on the context).
- Inverse element of each element in a group is unique.