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1. Introduction

A partial di�erential equation or abbreviated partial di�erential equation (PDE)
is an equation of the form:

F

(
x1, ..., xn, u,

∂u

∂x1
, ...,

∂u

∂xn
,

∂mu

∂xk11 ...∂x
kn
1 n

)
= 0

with F : Ω ⊆ Rp −→ R, being p ∈ N, n > 1, (x1, ..., xn) ∈ Ω, are the indepen-
dant variables and u = u(x1, ...xn is the dependant variable being k1+ ...+kn = m.

The order of the PDE is indicated by the highest order derivative within the
equation.

Observation: Partial derivatives can be expressed as ∂u
∂xk

= uxk . And when

n = 2 we use the following notation: (x, y) for problems and (t, x) for space-time
problems.

1.1. Classi�cation

An PDE is linear if, u, the dependent variable and its corresponding partial
derivatives appear only at �rst power.

We are going to study linear equations of order 2 with constant coe�cients in
two dimensions, which are de�ned by the expression:

Auxx +Buxy + Cuyy +Dux + Euy + Fu = G(x, y)

where A,B,C,D,E, F ∈ R and G(x, y) is a function.

We de�ne the discriminant as 4 = B2 − 4AC and we can classify as follow:

Elliptical B2 − 4AC < 0⇒ uxx + uyy = F (x, y)
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Hyperbolic B2 − 4AC > 0⇒ utt − c2uxx = F (x, t)

Parabolic B2 − 4AC = 0⇒ ut − kuxx = F (x, t)

EDPs are used, for example, to model processes that in addition to having
a temporal variation, have a spatial variation such as the variation of heat over
time in a solid, the distribution of populations in a certain habitat over time or
the propagation of the sound of the strings of a guitar. In general the PDEs are
quite di�cult to solve analytically, in fact, there are no theorems of existence and
uniqueness as "simple.as those studied in the initial value problems associated with
the ODE, we will try to solve the PDEs corresponding to the classical problems.

2. PDEs of second order

In two dimensions and making some assumption about their solutions it is
possible to solve some classes of PDE. This procedure is the so-called variable
separation method.

2.1. Method: Separate variables

In this method the function sought u(x, y) is assumed to be of the form
u(x, y) = F (x)G(y).

This assumption verify:

ux(x, y) = F ′(x)G(y)

uy(x, y) = F (x)G′(y)

uxy(x, y) = F ′(x)G′(y)

uxx(x, y) = F ′′(x)G(y)

uyy(x, y) = F (x)G′′(y)

and so on.

By substituting these expressions in the PDE, it is sometimes possible to reduce
an PDE to an ODE system with two equations that can be solved with the usual
methods.

Example

We are going to solve the PDE uxx = 4uy.
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We assume that the solution u(x, y) will be u(x, y) = F (x)G(y). So:

ux = F ′(x)G(y)⇒ uxx = F ′′(x)G(y)

uy = F (x)G′(y)⇒ uyy = F (x)G′′(y)

Substituting in the EDP we will obtain:

F ′′(x)G(y) = 4F (x)G′(y)

If the terms are now grouped independently into x and y we get:

F ′′(x)

F (x)
=

4G′(y)

G(y)

The �rst member is a function that only depends on x and the second member
is a function that only depends on y, so the only way for equality to be ful�lled
is for both values to be equal to a constant λ ∈ R, which is called the separation
constant:

F ′′(x)

F (x)
=

4G′(y)

G(y)
= λ

By equalizing each fraction to the separation constant we obtain two ordi- naria
di�erential equations.

F ′′(x)

F (x)
= λ⇒ F ′′(x)− λF (x) = 0

4G′(y)

G(y)
= λ⇒ 4G′(y)− λG(y) = 0

which are solved independently. According to the sign of λ we distinguish three
cases.

Case λ = 0

We have the following equations:

F ′′(x)− λF (x) = 0⇒ F ′′(x) = 0

4G′(y)− λG(y) = 0⇒ G′(y) = 0
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We can integrate both equations and obtain:

F (x) = c1x+ c3

G(y) = c3

with c1, c2, c3 ∈ R. So, the function u(x, y) is:

u(x, y) = F (x)G(y) = (c1x+ c3)c3 = A1x+B1.

Case λ > 0

We can assume that λ = a2 > 0. We have the following equations:

F ′′(x)− λF (x) = 0⇒ F ′′(x)− a2F (x) = 0

4G′(y)− λG(y) = 0⇒ 4G′(y)− a2G(y) = 0

The �rst of these equations is of the second linear order and of constant coef-
�cients whose general solution is of the form:

F (x) = c1e
ax + c2e

−ax

The second is also linear, but of the �rst order and its solution is:

G(y) = c3e
a2y
4

So, the function u(x, y) is:

u(x, y) = F (x)G(y) = (c1e
ax + c2e

−ax)c3e
a2y
4 = A2e

ax+a2y
4 +B2e

−ax+a2y
4 .

Case λ < 0

We can assume that λ = −a2 > 0. We have the following equations:

F ′′(x)− λF (x) = 0⇒ F ′′(x) + a2F (x) = 0

4G′(y)− λG(y) = 0⇒ 4G′(y) + a2G(y) = 0
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As in the previous case, the �rst of these equations is second-order, in this case,
as the characteristic polynomial has complex roots +ai,−ai, its general solution
is of the form:

F (x) = c1cos(ax) + c2sen(ax)

The second is of �rst order and its solution is:

G(y) = c3e
−a2y

4

So, the function u(x, y) is:

u(x, y) = F (x)G(y) = (c1cos(ax)+c2sen(ax))c3e
−a2y

4 = A3e
−a2y

4 cos(ax)+B3e
−a2y

4 sen(ax).

In these examples it has been seen that similar to what happens with ordinary
di�erential equations (ODE) for which the general solution implied the existence
of arbitrary constants, in this case the solutions of an EDP usually involve arbi-
trary functions. In general, by solving an PDE we can obtain an in�nite number of
solutions that will depend on those arbitrary functions. To obtain a single solution
to EDP problems and as with EDO, these problems must be associated with con-
ditions or constraints that can be of two types: initial conditions and/or boundary
conditions.

2.2. Heat equation

The heat equation describes the variation in temperature in a region over time.
In the case of the heat equation in one dimension, it would describe the temperature
in a bar of length L with time t and is expressed as:

ut = α2uxx if t > 0 and x ∈ (0, L)
u(0, x) = f(x) if 0 < x < L,
u(t, 0) if t > 0

The conditions u(t, 0) = u(t, L) = 0 are the boundary conditions and indicate
that the temperature at the ends of the bar is constant and equal to 0. While
the condition u(0, x) = f(x) is an initial condition and indicates the temperature
distribution in the bar at the initial instant. The value α is the thermal di�usivity
and depends on the material that forms the bar.

We are going to use the method of separation of variables to solve this equation,
for this we will assume that the solution u(t, x) can be put as a product of two
functions in each of the independent variables u(t, x) = F (t)G(x).
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Substituting in the heat equation:

ut = α2uxx ⇒ F ′(t)G(x) = α2F (t)G′′(X)

Obviously the null function u ≡ 0 is a solution of the partial di�erential equa-
tion, however it will only be a solution of the problem if f(x) = 0 which is the
trivial case; so we will look for alternative solutions and therefore assume that
F (t) 6= 0 and G(x) 6= 0, therefore:

1

α2

F ′(t)

F (t)
=
G′′(x)

G(x)
.

One side of equality depends only on t and the other depends only on x,
therefore, for equality both members must be constant:

1

α2

F ′(t)

F (t)
=
G′′(x)

G(x)
= −λ

with λ ∈ R, the separation constant and where we have chosen the minus sign
by convention.

From the previous equation we get two di�erential equations:

F ′(t) + λα2F (t) = 0

G′′(x) + λG(x) = 0

Boundary conditions are transformed into:

u(t, 0) = F (t)G(0) = 0

u(t, L) = F (t)G(L) = 0

and being t arbitrary, it follows that G(0) = G(L) = 0.

We will have the contour problem:
G′′(x) + λG(x) = 0
G(0) = 0
G(L) = 0

whose solution will depend on the value of the separation parameter λ. We
distinguish three cases.
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Case λ = 0

We have the following equations:

G′′(x) + λG(x) = 0⇒ G′′(x) = 0

We can integrate the equation twice and obtain:

G(x) = Ax+B

with A,B ∈ R.
Taking into account the boundary conditions we have:

G(0) = 0⇒ B = 0

G(L) = 0⇒ AL+B = 0

with L 6= 0. So, the solution is A = B = 0, and we get the null solution, which
we have said we are not interested in.

Case λ > 0

We can assume that λ = a2 > 0. We have the following equations:

F ′′(x)− λF (x) = 0⇒ F ′′(x)− a2F (x) = 0

4G′(y)− λG(y) = 0⇒ 4G′(y)− a2G(y) = 0

The �rst of these equations is of the second linear order and of constant coef-
�cients whose general solution is of the form:

F (x) = c1e
ax + c2e

−ax

The second is also linear, but of the �rst order and its solution is:

G(y) = c3e
a2y
4

So, the function u(x, y) is:

u(x, y) = F (x)G(y) = (c1e
ax + c2e

−ax)c3e
a2y
4 = A2e

ax+a2y
4 +B2e

−ax+a2y
4 .

Case λ < 0
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We can assume that λ = −µ2 > 0. We have the following equations:

G′′(x) + λG(x) = 0⇒ G′′(x)− µ2G(x) = 0

whose general solution is:

G(x) = Aeµx +Be−µx

Taking into account the boundary conditions we have:

G(0) = 0⇒ A+B = 0

G(L) = 0⇒ AeµL +Be−µL = 0

The above equations form a homogeneous linear system in the unknowns A
and B. The determinant of the coe�cient matrix is:∣∣∣∣ 1 1

eµL e−µL

∣∣∣∣ = e−muL − eµL = −2senh(µL)

and since µ 6= 0 is non-zero, the only solution of the system is the trivial
A = B = 0, which gives us for the contour problem again the null solution.

Case λ > 0

We can assume that λ = µ2 > 0. We have the following equations:

G′′(x) + λG(x) = 0⇒ G′′(x) + µ2G(x) = 0

whose general solution is:

G(x) = Acos(µx) +Bsen(µx)

Taking into account the boundary conditions we have:

G(0) = 0⇒ A = 0

G(L) = 0⇒ Acos(µL) +Bsen(µL) = 0⇒ Bsen(µL) = 0

As we do not want the null solution must be B 6= 0 and

sen(µL) = 0⇒ µL = nπ, n ∈ Z
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so,

µ =
nπ

L

and the value of λ = µ2 is

λ =
n2π2

L2
, n ∈ N

Remember that λ was an arbitrary constant, then for each value of n ∈ N, we
will have a possible solution of the ODE,

λn =
n2π2

L2
⇒ Gn(x) = Bnsen(

nπ

L
x)

Note that for n = 0 the null would be obtained again, then we will assume
x ≥ 1.

The only values that provide solutions other than the null solution are:

λn =
n2π2

L2

For these values and using the other di�erential equation, we have:

F ′(t) + α2λ2F (t) = 0⇒ F ′(t) = +α2n
2π2

L2
F (t) = 0

whose solution for each n ∈ N is of the form:

Fn(t) = Ane
−α

2n2π2

L2 t, An ∈ R

And the solution of the EDP will be, for each n, of the form:

un(t, x) = Fn(t)Gn(x) =

(
Ane

−α
2n2π2

L2 t

)(
Bnsen

(nπ
L
x
))

= bnsen
(nπ
L
x
)
e−

α2n2π2

L2 t

where we have put bn = AnBn ∈ R.

Since the equation is linear, any linear combination of solutions is also a solu-
tion, so we will consider as a general solution in the formal sense to:

u(t, x) =
∞∑
n=1

bnsen
(nπ
L
x
)
e−

α2n2π2

L2 t

Finally, using the initial condition u(0, x) = f(x) is obtained:

u(0, x) =
∞∑
n=1

bnsen
(nπ
L
x
)

= f(x)
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We can calculate the value of the coe�cient bn, if we observe the expression as
a Fourier development, speci�cally that of the odd extension of f(x), therefore:

bn =
2

L

∫ L

0

f(x)sen
(nπ
L
x
)
dx.

The expression of u(t, x) is said to be the formal solution because we can-
not assure that it is a true solution, that is, that f(x) can be represented by a
trigonometric series.

On the other hand, although linearity guarantees that a �nite linear combina-
tion of solutions is a solution, our linear combination is in�nite, so we would have
to verify that it is indeed a solution (deriving two times and substituting in the
corresponding equation), and this is a di�cult process, although in our case it is
guaranteed by the presence of the exponential term in the formal solution, since if

n→∞ then e−
α2n2π2

L2 t → 0.
Qualitatively the equation describes a process of heat di�usion through the bar,

the bar dissipates heat by converging to 0 and smoothing out any irregularities
f(x) you may have. We apply this analysis to a concrete example.

We have used the heat equation to exemplify a speci�c case of application.However,
there are other classic examples such as the wave equation or Laplace equation
that can also be solved by this method of separation of variables. They can be
interesting cases to solve and thus to practice the method.
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