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2. Initial value
problems

Modeling with ODEs



Introduction

• Differential equations is the most widely used 
mathematical structure of mechanistic models.

• They are equations that involve derivatives of an 
unknown function.

• They help to understand the processes within the system
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Introduction

• Classification:
– Ordinary Differential Equation (ODE): involve only the 

derivative of one variable.
– Partial Differential Equations (PDE): involve the 

derivative of more than one variable.
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Ordinary Differential
Equations

• Deffinition:
𝑓𝑓 𝑥𝑥,𝑦𝑦,𝑦𝑦′,𝑦𝑦′′, … ,𝑦𝑦 𝑛𝑛 = 0

Where y = 𝑓𝑓 𝑥𝑥
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Order of an ODE

• Maximum order of the derivatives:

– 𝑦𝑦′′ + 𝑦𝑦′ · sin(𝑥𝑥) = 2𝑥𝑥  Second order

– 𝑦𝑦(𝑛𝑛) = 𝑓𝑓 𝑥𝑥,𝑦𝑦,𝑦𝑦′,𝑦𝑦′′, … ,𝑦𝑦 𝑛𝑛−1  n-order

– 𝑇𝑇′ = 𝑘𝑘 𝑇𝑇 − 𝑇𝑇𝑎𝑎 ,𝑇𝑇 = 𝑇𝑇 𝑡𝑡 ,𝑘𝑘,𝑇𝑇𝑎𝑎 ∈ ℝ  First order
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Motivation

• Where do EDOS come from?
• Origin of ODEs

– Why do they appear? 
– How are they deduced? 
– Where do they come from?

• They appear from observable phenomena, from 
experimentation

• We can generally calculate or estimate the rates of 
change of certain quantities but not the quantities.
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Example: Maltus
population dynamics

• Maltus: The rate of change of a population with respect 
to time is proportional to the size of the population 
(considering birth and mortality rates constants).

• Be 𝑃𝑃 = 𝑃𝑃(𝑡𝑡) the population size in an instant 𝑡𝑡, its rate of 
change with respect to time will be:

𝑃𝑃𝑃 = 𝑃𝑃𝑃 𝑡𝑡 =
𝑑𝑑 𝑃𝑃 𝑡𝑡
𝑑𝑑𝑡𝑡

• Therefore, according to Malthus, the rate of change is 
proportional to the size of the population:

𝑃𝑃𝑃 𝑡𝑡 = 𝑘𝑘 · 𝑃𝑃 𝑡𝑡 , 𝑘𝑘 ∈ ℝ
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General idea of ODEs

• What is π?

𝜋𝜋 = 3.1415926535897932384626433832795028841971693993...

𝜋𝜋 = 4 · �
𝑛𝑛=0

∞
−1 𝑛𝑛

2𝐷𝐷 + 1
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General idea of ODEs
• What is 𝐷𝐷?

𝐷𝐷 = 3.1415926535897932384626433832795028841971693993...

𝐷𝐷 = �
𝑛𝑛=0

∞
𝑥𝑥𝑛𝑛

𝐷𝐷!

𝑓𝑓 𝑡𝑡 = 𝐷𝐷𝑡𝑡

𝑓𝑓′ 𝑡𝑡 = 𝐷𝐷𝑡𝑡

𝑓𝑓 0 = 1
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Ordinary Differential
Equations

Remember

• Deffinition:
𝑓𝑓 𝑥𝑥,𝑦𝑦,𝑦𝑦′,𝑦𝑦′′, … ,𝑦𝑦 𝑛𝑛 = 0

Where y = 𝑓𝑓 𝑥𝑥

Is there a unique solution?

10



ODEs as function
generators

• What is the function defined by these equations?

𝑓𝑓′′(𝑡𝑡) = −𝑓𝑓(𝑡𝑡)

𝑓𝑓 0 = 1

𝑓𝑓′ 0 = 0
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ODE General solution

• The general solution of F 𝑥𝑥,𝑦𝑦,𝑦𝑦′,𝑦𝑦′′, … ,𝑦𝑦 𝑛𝑛 = 0 is a 
family of functions

𝑦𝑦 = 𝑓𝑓 𝑥𝑥,𝐶𝐶1,𝐶𝐶2, … ,𝐶𝐶𝑛𝑛

Where 𝐶𝐶𝑖𝑖 ∈ ℝ
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ODEs as function
generators

• What is the function defined by these equations?

𝑓𝑓′′(𝑡𝑡) = −𝑓𝑓(𝑡𝑡)

𝑓𝑓 0 = 1

𝑓𝑓′ 0 = 0
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Example: Maltus
population dynamics

𝑃𝑃𝑃 𝑡𝑡 = 𝑘𝑘 · 𝑃𝑃 𝑡𝑡 , 𝑘𝑘 ∈ ℝ

𝑑𝑑𝑃𝑃
𝑑𝑑𝑡𝑡 = 𝑘𝑘 · 𝑃𝑃

𝑑𝑑𝑃𝑃
𝑃𝑃 = 𝑘𝑘 · 𝑑𝑑𝑡𝑡 ⇒ �

1
𝑃𝑃 · 𝑑𝑑𝑃𝑃 = �𝑘𝑘 · 𝑑𝑑𝑡𝑡

�
1
𝑃𝑃 · 𝑑𝑑𝑃𝑃 = ln 𝑃𝑃 + 𝐶𝐶1,�𝑘𝑘 · 𝑑𝑑𝑡𝑡 = 𝑘𝑘 · 𝑡𝑡 + 𝐶𝐶2

ln 𝑃𝑃 = 𝑘𝑘 · 𝑡𝑡 + 𝐶𝐶3 ⇒ 𝑃𝑃 = 𝐷𝐷𝑘𝑘·𝑡𝑡+𝐶𝐶3 = 𝐶𝐶 · 𝐷𝐷𝑘𝑘·𝑡𝑡
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Example: Maltus
population dynamics

• If the initial population was 300:
𝑃𝑃 0 = 300 = 𝐶𝐶 · 𝐷𝐷𝑘𝑘·0 ⇒ 𝐶𝐶 = 300

𝑃𝑃(𝑡𝑡) = 300 · 𝐷𝐷𝑘𝑘·𝑡𝑡
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Basic concepts

• First-order ODEs
– Let Ω ⊂ ℝ2,𝐹𝐹:Ω → ℝ a continuous function. Then:

𝑦𝑦′ 𝑡𝑡 = 𝐹𝐹 𝑡𝑡,𝑦𝑦 𝑡𝑡

is a first-order ODE in the unknown function 𝑦𝑦 𝑡𝑡 . A function
𝑦𝑦: 𝐷𝐷, 𝑏𝑏 → ℝ is called a solution of the ODE if this equation is
satisfied for every 𝑡𝑡 ∈ [𝐷𝐷, 𝑏𝑏] ⊂ ℝ
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Basic concepts

• Autonomous: the ODE does not depend on t explicitly.
– 𝑦𝑦′ = 𝐹𝐹 𝑦𝑦(𝑡𝑡) → 𝐴𝐴𝑒𝑒𝑡𝑡𝑒𝑒𝐷𝐷𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑓𝑓. E.g. 𝑦𝑦′ = 𝑦𝑦
– 𝑦𝑦′ = 𝐹𝐹 𝑦𝑦 𝑡𝑡 , 𝑡𝑡 → 𝑁𝑁𝑒𝑒𝐷𝐷 𝐷𝐷𝑒𝑒𝑡𝑡𝑒𝑒𝐷𝐷𝑒𝑒𝐴𝐴𝑒𝑒𝑒𝑒𝑓𝑓. E.g. 𝑦𝑦′ = 𝑦𝑦 · 𝐷𝐷−𝑡𝑡
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Basic concepts

• The initial value problem
Let Ω ⊂ ℝ2,𝐹𝐹:Ω → ℝ a continuous function and y0 ∈ ℝ. Then:

𝑦𝑦′ 𝑡𝑡 = 𝐹𝐹 𝑡𝑡,𝑦𝑦 𝑡𝑡

𝑦𝑦 𝐷𝐷 = 𝑦𝑦0

is an initial value problem for the ODE equation. A function
𝑦𝑦: 𝐷𝐷, 𝑏𝑏 → ℝ is called a solution of the ODE if both equations
are satisfied for every 𝑡𝑡 ∈ [𝐷𝐷, 𝑏𝑏] ⊂ ℝ
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Basic concepts

• Linear versus nonlinear
– A linear ODE is a linear polynomial in the unknown function

𝑦𝑦(𝑛𝑛) = 𝑏𝑏 𝑥𝑥 + 𝐷𝐷0 𝑥𝑥 · 𝑦𝑦 + 𝐷𝐷1 𝑥𝑥 · 𝑦𝑦′ + ⋯+ 𝐷𝐷𝑛𝑛−1 𝑥𝑥 · 𝑦𝑦 𝑛𝑛−1

= 𝑏𝑏 𝑥𝑥 + �
𝑖𝑖=0

𝑛𝑛−1

𝐷𝐷𝑖𝑖(𝑥𝑥) · 𝑦𝑦 𝑖𝑖

– Example:
• Body temperature
• Clock alarm temperature
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Basic concepts

• Closed form vs. Numerical solutions
– Closed form: (otherwise known as analytical solution) Is a

solution of the ODE in terms of “well-known” equations. Most
ODEs cannot be solved in this way.

– Numerical form: Appropriate computer algorithms are used to
obtain approximations of the ODE solutions.
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Numerical
solution of ODEs

• Implicit and explicit solutions:

– Explicit: Methods that calculate the value of the system at a 
later time from the state of the system at the current time.

𝑌𝑌(𝑡𝑡 + Δ𝑡𝑡) = 𝐹𝐹(𝑌𝑌 𝑡𝑡 )

– Implicit: Methods that find a solution to 𝑌𝑌(𝑡𝑡 + Δ𝑡𝑡) by solving 
an equation involving the current state of the system and the 
later one.

𝐺𝐺(𝑌𝑌 𝑡𝑡 ,𝑌𝑌 𝑡𝑡 + Δ𝑡𝑡 ) = 0

– Operator splitting: the differential operator is rewritten as 
the sum of two complementary operators.

𝑌𝑌 𝑡𝑡 + Δ𝑡𝑡 = 𝐺𝐺 𝑌𝑌 𝑡𝑡 + Δ𝑡𝑡 + 𝐹𝐹(𝑌𝑌 𝑡𝑡 )
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𝑑𝑑𝑓𝑓(𝑡𝑡)
𝑑𝑑𝑡𝑡

= lim
Δ𝑡𝑡→0

𝑓𝑓 𝑡𝑡 + Δ𝑡𝑡 − 𝑓𝑓(𝑡𝑡)
Δ𝑡𝑡

• If Δ𝑡𝑡 is close to 0 we can approximate:

𝑑𝑑𝑓𝑓(𝑡𝑡)
𝑑𝑑𝑡𝑡

≈
𝑓𝑓 𝑡𝑡 + Δ𝑡𝑡 − 𝑓𝑓 𝑡𝑡

Δ𝑡𝑡
→ 𝑓𝑓 𝑡𝑡 + Δ𝑡𝑡 ≈ 𝑓𝑓 𝑡𝑡 +

𝑑𝑑𝑓𝑓 𝑡𝑡
𝑑𝑑𝑡𝑡

· Δ𝑡𝑡

• If 𝑑𝑑𝑑𝑑 𝑡𝑡
𝑑𝑑𝑡𝑡

is known, and the value of 𝑓𝑓(0) is also known, we can calculate
the value of 𝑓𝑓(𝑡𝑡)

• This method is called Fordward Euler and is an explicit method: the
value in 𝑡𝑡 + Δ𝑡𝑡 is calculated based on the derivative in 𝑡𝑡 (a previous
instant of time)
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• Explicit

𝑣𝑣′(𝑡𝑡) =
𝑑𝑑𝑣𝑣 𝑡𝑡
𝑑𝑑𝑡𝑡 = 𝑔𝑔, 𝑥𝑥′(𝑡𝑡) =

𝑑𝑑𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡 = 𝑣𝑣 𝑡𝑡

𝑣𝑣 𝑡𝑡 + Δ𝑡𝑡 = 𝑣𝑣 𝑡𝑡 + Δ𝑡𝑡 · 𝑣𝑣′ 𝑡𝑡 = 𝑣𝑣 𝑡𝑡 + Δ𝑡𝑡 · 𝑔𝑔

𝑥𝑥 𝑡𝑡 + Δ𝑡𝑡 = 𝑥𝑥 𝑡𝑡 + Δ𝑡𝑡 · 𝑥𝑥′ 𝑡𝑡 =
= 𝑥𝑥 𝑡𝑡 + Δ𝑡𝑡 · 𝑣𝑣 𝑡𝑡
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Example: 
Gravity problem



• Explicit

𝑣𝑣′ =
𝑑𝑑𝑣𝑣
𝑑𝑑𝑡𝑡 = 𝑔𝑔, 𝑥𝑥′ =

𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡 = 𝑣𝑣 𝑡𝑡 , 𝑣𝑣 0 = 0, 𝑥𝑥 0 = 10

– Step 0:
• 𝑣𝑣′ 0 = 𝑔𝑔, 𝑣𝑣 0 = 0
• 𝑥𝑥′ 0 = 𝑣𝑣 0 , 𝑥𝑥 0 = 10

– Step 1:
• 𝑣𝑣 Δ𝑡𝑡 = 𝑣𝑣 0 + Δ𝑡𝑡 · 𝑣𝑣′ 0 = Δ𝑡𝑡 · 𝑔𝑔
• 𝑥𝑥 Δ𝑡𝑡 = 𝑥𝑥 0 + Δ𝑡𝑡 · 𝑥𝑥′ 0 = 10

– Step 2:
• 𝑣𝑣 2Δ𝑡𝑡 = 𝑣𝑣 Δ𝑡𝑡 + Δ𝑡𝑡 · 𝑣𝑣′ Δ𝑡𝑡 = 2Δ𝑡𝑡 · 𝑔𝑔
• 𝑥𝑥 2Δ𝑡𝑡 = 𝑥𝑥 Δ𝑡𝑡 + Δ𝑡𝑡 · 𝑥𝑥′ Δ𝑡𝑡 = 10 + Δ𝑡𝑡2 · 𝑔𝑔
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Example: 
Gravity problem



25

Example: 
Gravity problem
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Forward Euler Method

• The method used in the example is the Forward Euler 
Method

• The value of the state variables in an instant t is
calculated with the information of the system in the
previous instant (t-∆t)

𝑦𝑦 𝑡𝑡 = 𝑦𝑦 𝑡𝑡 − Δ𝑡𝑡 + 𝑦𝑦′ 𝑡𝑡 − Δ𝑡𝑡 · Δ𝑡𝑡

• Explicit method.
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Example: 
Gravity problema (cont)

Evaluating the (absolute) error of the approximation as:
𝐸𝐸 = 𝑦𝑦 − �𝑦𝑦



Forward Euler Method

• Order of convergence: How fast a method converges
towards the exact solution if the stepsize ( ℎ ) is
decreased towards 0.

• Forward Euler Method order of convergence is 1:
𝑦𝑦1 = 𝑦𝑦 0 + ℎ ⋅ 𝑦𝑦′ 0

𝑦𝑦 ℎ = 𝑦𝑦 0 + ℎ ⋅ 𝑦𝑦′ 0 +
1
2
ℎ2 ⋅ 𝑦𝑦′′ 0 + 𝑂𝑂 ℎ3

𝑦𝑦 ℎ − 𝑦𝑦1 =
1
2
ℎ2 ⋅ 𝑦𝑦′′ 0 + 𝑂𝑂 ℎ3

From this we can see that:
𝐸𝐸𝐷𝐷𝐷𝐷𝑒𝑒𝐷𝐷~ℎ2 & 𝑆𝑆𝑡𝑡𝐷𝐷𝑆𝑆𝑓𝑓𝐷𝐷𝑆𝑆𝐷𝐷~

1
ℎ → 𝑂𝑂𝐷𝐷𝑑𝑑𝐷𝐷𝐷𝐷 = ℎ1
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Exercise: 

Considering the first order ODE:

𝑦𝑦′ = −15 𝑦𝑦
𝑦𝑦 0 = 1

This is an example of what is known as Stiff equation because
its numerical solution is unstable unless a small step size is used.

a) Analytically obtain its solution.
b) Write an R script for obtaining the numerical solution using

the Euler Method with a ∆𝑡𝑡 = 0.01 and 0 ≤ 𝑡𝑡 ≤ 1 . Analyze the
error and convergence of the method for this setting.

c) Modify ∆𝑡𝑡 = 1/8 and repeat the calculations, draw your own
conclusions.
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