2. Initial value problems

Modeling with ODEs

Jesús Carro Fernández
jcarro@usj.es
Facultad de Ciencias de la Salud

Introduction

- Differential equations is the most widely used mathematical structure of mechanistic models.
- They are equations that involve derivatives of an unknown function.
- They help to understand the processes within the system

Introduction

- Classification:
- Ordinary Differential Equation (ODE): involve only the derivative of one variable.
- Partial Differential Equations (PDE): involve the derivative of more than one variable.

Ordinary Differential Equations

- Deffinition:

$$
f\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0
$$

Where $\mathrm{y}=f(x)$

Order of an ODE

- Maximum order of the derivatives:
$-y^{\prime \prime}+y^{\prime} \cdot \sin (x)=2 x \rightarrow$ Second order
$-y^{(n)}=f\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n-1)}\right) \rightarrow$ n-order
- $T^{\prime}=k\left(T-T_{a}\right), T=T(t), k, T_{a} \in \mathbb{R} \rightarrow$ First order

Motivation

- Where do EDOS come from?
- Origin of ODEs
- Why do they appear?
- How are they deduced?
- Where do they come from?
- They appear from observable phenomena, from experimentation
- We can generally calculate or estimate the rates of change of certain quantities but not the quantities.

Example: Maltus population dynamics

- Maltus: The rate of change of a population with respect to time is proportional to the size of the population (considering birth and mortality rates constants).
- Be $P=P(t)$ the population size in an instant t, its rate of change with respect to time will be:

$$
P^{\prime}=P^{\prime}(t)=\frac{d(P(t))}{d t}
$$

- Therefore, according to Malthus, the rate of change is proportional to the size of the population:

$$
P^{\prime}(t)=k \cdot P(t), k \in \mathbb{R}
$$

Differential equation of first order

General idea of ODEs

- What is π ?
$\pi=3.1415926535897932384626433832795028841971693993 \ldots$

$$
\pi=4 \cdot \sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
$$

General idea of ODEs

- What is e ?
$e=3.1415926535897932384626433832795028841971693993 . .$.

$$
\begin{aligned}
& e=\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
& f(t)=e^{t} \\
& f^{\prime}(t)=e^{t} \\
& f(0)=1
\end{aligned}
$$

Ordinary Differential Equations

Remember

- Deffinition:

$$
f\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0
$$

Where $\mathrm{y}=f(x)$

Is there a unique solution?

ODEs as function generators

- What is the function defined by these equations?

$$
\begin{gathered}
f^{\prime \prime}(t)=-f(t) \\
f(0)=1 \\
f^{\prime}(0)=0
\end{gathered}
$$

ODE General solution

- The general solution of $\mathrm{F}\left(x, y, y^{\prime}, y^{\prime \prime}, \ldots, y^{(n)}\right)=0$ is a family of functions

$$
y=f\left(x, C_{1}, C_{2}, \ldots, C_{n}\right)
$$

Where $C_{i} \in \mathbb{R}$

ODEs as function generators

- What is the function defined by these equations?

$$
\begin{gathered}
f^{\prime \prime}(t)=-f(t) \\
f(0)=1 \\
f^{\prime}(0)=0
\end{gathered}
$$

Example: Maltus population dynamics

$$
\begin{gathered}
P^{\prime}(t)=k \cdot P(t), k \in \mathbb{R} \\
\frac{d P}{d t}=k \cdot P \\
\frac{d P}{P}=k \cdot d t \Rightarrow \int \frac{1}{P} \cdot d P=\int k \cdot d t \\
\int \frac{1}{P} \cdot d P=\ln (P)+C_{1}, \int k \cdot d t=k \cdot t+C_{2} \\
\ln (P)=k \cdot t+C_{3} \Rightarrow P=e^{k \cdot t+C_{3}}=C \cdot e^{k \cdot t}
\end{gathered}
$$ population dynamics

- If the initial population was 300:

$$
P(0)=300=C \cdot e^{k \cdot 0} \Rightarrow C=300
$$

Basic concepts

- First-order ODEs
- Let $\Omega \subset \mathbb{R}^{2}, F: \Omega \rightarrow \mathbb{R}$ a continuous function. Then:

$$
y^{\prime}(t)=F(t, y(t))
$$

is a first-order ODE in the unknown function $y(t)$. A function $y:[a, b] \rightarrow \mathbb{R}$ is called a solution of the ODE if this equation is satisfied for every $t \in[a, b] \subset \mathbb{R}$

Basic concepts

- Autonomous: the ODE does not depend on t explicitly.
- $y^{\prime}=F(y(t)) \rightarrow$ Autonomous. E.g. $y^{\prime}=y$
- $y^{\prime}=F(y(t), t) \rightarrow$ Non autonomous. E.g. $y^{\prime}=y \cdot e^{-t}$

Basic concepts

- The initial value problem

Let $\Omega \subset \mathbb{R}^{2}, F: \Omega \rightarrow \mathbb{R}$ a continuous function and $\mathrm{y}_{0} \in \mathbb{R}$. Then:

$$
\begin{gathered}
y^{\prime}(t)=F(t, y(t)) \\
y(a)=y_{0}
\end{gathered}
$$

is an initial value problem for the ODE equation. A function $y:[a, b] \rightarrow \mathbb{R}$ is called a solution of the ODE if both equations are satisfied for every $t \in[a, b] \subset \mathbb{R}$

Basic concepts

- Linear versus nonlinear
- A linear ODE is a linear polynomial in the unknown function

$$
\begin{aligned}
& y^{(n)}=b(x)+a_{0}(x) \cdot y+a_{1}(x) \cdot y^{\prime}+\cdots+a_{n-1}(x) \cdot y^{(n-1)} \\
& =b(x)+\sum_{i=0}^{n-1} a_{i}(x) \cdot y^{(i)}
\end{aligned}
$$

- Example:
- Body temperature
- Clock alarm temperature

Basic concepts

- Closed form vs. Numerical solutions
- Closed form: (otherwise known as analytical solution) Is a solution of the ODE in terms of "well-known" equations. Most ODEs cannot be solved in this way.
- Numerical form: Appropriate computer algorithms are used to obtain approximations of the ODE solutions.

Numerical solution of ODEs

- Implicit and explicit solutions:
- Explicit: Methods that calculate the value of the system at a later time from the state of the system at the current time.

$$
Y(t+\Delta t)=F(Y(t))
$$

- Implicit: Methods that find a solution to $Y(t+\Delta t)$ by solving an equation involving the current state of the system and the later one.

$$
G(Y(t), Y(t+\Delta t))=0
$$

- Operator splitting: the differential operator is rewritten as the sum of two complementary operators.

$$
Y(t+\Delta t)=G(Y(t+\Delta t))+F(Y(t))
$$

Definition of derivative

$$
\frac{d f(t)}{d t}=\lim _{\Delta t \rightarrow 0} \frac{f(t+\Delta t)-f(t)}{\Delta t}
$$

- If Δt is close to 0 we can approximate:

$$
\frac{d f(t)}{d t} \approx \frac{f(t+\Delta t)-f(t)}{\Delta t} \rightarrow f(t+\Delta t) \approx f(t)+\frac{d f(t)}{d t} \cdot \Delta t
$$

- If $\frac{d f(t)}{d t}$ is known, and the value of $f(0)$ is also known, we can calculate the value of $f(t)$
- This method is called Fordward Euler and is an explicit method: the value in $t+\Delta t$ is calculated based on the derivative in t (a previous instant of time)

Example: Gravity problem

- Explicit

$$
\begin{aligned}
& v^{\prime}(t)=\frac{d v(t)}{d t}=g, \quad x^{\prime}(t)=\frac{d x(t)}{d t}=v(t) \\
& \begin{aligned}
& v(t+\Delta t)=v(t)+\Delta t \cdot v^{\prime}(t)=v(t)+\Delta t \cdot g \\
& x(t+\Delta t)=x(t)+\Delta t \cdot x^{\prime}(t)= \\
&=x(t)+\Delta t \cdot v(t)
\end{aligned}
\end{aligned}
$$

Example: Gravity problem

- Explicit

$$
v^{\prime}=\frac{d v}{d t}=g, \quad x^{\prime}=\frac{d x}{d t}=v(t), \quad v(0)=0, \quad x(0)=10
$$

- Step 0:
- $v^{\prime}(0)=g, v(0)=0$
- $x^{\prime}(0)=v(0), x(0)=10$
- Step 1:
- $v(\Delta t)=v(0)+\Delta t \cdot v^{\prime}(0)=\Delta t \cdot g$
- $x(\Delta t)=x(0)+\Delta t \cdot x^{\prime}(0)=10$
- Step 2:
- $v(2 \Delta t)=v(\Delta t)+\Delta t \cdot v^{\prime}(\Delta t)=2 \Delta t \cdot g$
- $x(2 \Delta t)=x(\Delta t)+\Delta t \cdot x^{\prime}(\Delta t)=10+\Delta t^{2} \cdot g$

Example: Gravity problem

Forward Euler Method

- The method used in the example is the Forward Euler Method
- The value of the state variables in an instant t is calculated with the information of the system in the previous instant $(t-\Delta t)$

$$
y(t)=y(t-\Delta t)+y^{\prime}(t-\Delta t) \cdot \Delta t
$$

- Explicit method.

Example: Gravity problema (cont)

Evaluating the (absolute) error of the approximation as:

$$
E=|y-\hat{y}|
$$

Forward Euler Method

- Order of convergence: How fast a method converges towards the exact solution if the stepsize (h) is decreased towards 0 .
- Forward Euler Method order of convergence is 1 :

$$
\begin{aligned}
& y_{1}=y(0)+h \cdot y^{\prime}(0) \\
& y(h)=y(0)+h \cdot y^{\prime}(0)+\frac{1}{2} h^{2} \cdot y^{\prime \prime}(0)+O\left(h^{3}\right) \\
& y(h)-y_{1}=\frac{1}{2} h^{2} \cdot y^{\prime \prime}(0)+O\left(h^{3}\right)
\end{aligned}
$$

From this we can see that:

$$
\text { Error } \sim h^{2} \& \text { Stepsize } \sim \frac{1}{h} \rightarrow \text { Order }=h^{1}
$$

Exercise:

Considering the first order ODE:

$$
\begin{aligned}
& y^{\prime}=-15 y \\
& y(0)=1
\end{aligned}
$$

This is an example of what is known as Stiff equation because its numerical solution is unstable unless a small step size is used.
a) Analytically obtain its solution.
b) Write an R script for obtaining the numerical solution using the Euler Method with a $\Delta t=0.01$ and $0 \leq t \leq 1$. Analyze the error and convergence of the method for this setting.
c) Modify $\Delta t=1 / 8$ and repeat the calculations, draw your own conclusions.

www.usj.es

universidad Campus Universitario Villanueva de Gallego SANJORGE

