
Season 1: ODE's analytical solution

Marta Gómez Gómez

1. Introduction

1.1. First de�nitions

A ordinary di�erential equations (ODE) is an equation that relates a variable
x, a function of that variable y(x), and the derivatives of that function. In general,
it can be expressed like this:

F (x, y, y′, . . . , y(n)) = 0

with x the independent variable and y the dependent variable

y′′(x) + 2y′(x) + 3y(x) = 0

The order of an ODE is the highest order or degree of derivation that appears
in the equation.

y′′ + y · y′ = 0, ODE of order 2.

y′2 + y′′ · y′′′ = x2, ODE of order 3.

(y′)2 = y, ODE of order 1.

If we have to solve several ODEs at the same time, they form a system of di�erential equations .{
F (x, y, y′, . . . , y(n)) = 0

G(x, y, y′, . . . , y(n)) = 0

An ordinary di�erential equation F (x, y, y′, . . . , y(n)) = 0 is linear if F is linear
in the variables y, y′, . . . , y(n). The general ODE of order n es:

an(x)y(n) + an−1(x)y(n−1) + · · ·+ a1(x)y = g(x) (1)

An equation that is not of the above form is nonlinear .
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y′′ + y = ex linear equation.

y′′ + 2 sin y = 0 nonlinear equation.

1.2. Solution of an ODE

A solution of an ordinary di�erential equation

F (x, y, y′, . . . , y(n)) = 0

is a function y = z(x) that verify:

y = z(x) ∈ C(n([a, b]),

Verify the equation:

F (x, z(x), z′(x), . . . , z(n)(x)) = 0

For example:

y(x) = 1
x

is a solution of the equation y′ = −1
x2
.

y(x) = ex is a solution of the equation y′ = 3ex − 2y.

In general, an ordinary di�erential equation can have more than one solu-
tion,even in�nite solutions represented by a single expression containing constants.
This expression is called general solution. If speci�c values are assigned to the con-
tants, the solution obtained is a particular solution.

Finaly, it is said that we have an Initial Value Problem (IVP) of order one,
if in addition to the ordinary di�erential equation, we have some complementary
condition at a single point, {

y′ = f(x, y)

y(x0) = y0

If the conditions are given at di�erent points, it is a Boundary Problem (CVP).

(PV I)

{
y′ = 3y

y(0) = 0
, (PV C)

{
y′′ + y′ = 0

y(0) = 0, y(1) = 0
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2. ODEs of �rst order

2.1. Separate variables

The general form of these equations is:

y′ = f(x)g(y)

To �nd the general solution we have to do:

dy

dx
= f(x)g(y)⇔ dy

g(y)
= f(x)dx

∫
dy

g(y)
=

∫
f(x)dx+ C

Observation: It is assumed that g(y) does not cancel at any point in the interval
of integration of y.

Example.

y′(x) = (1 + y2)x∫
dy

1 + y2
=

∫
xdx+ C

arctan(y) =
x2

2
+ C ⇔ y = tan

(
x2

2
+ C

)
Exercise.

x2

x− 1
dx+

y2

y + 1
dy = 0

2.2. Homogeneous equations

The form of these homogeneous equations is y′ = f(x, y) where we can express
f(x, y) as y′ = F ( y

x
).

To transform the given equation into an equation of separate variables, we have
to do the change of variable: y(x) = u(x)x. Speci�cally, it becomes:

u′(x) =
F (u)− u

x

Observation: M(x, y)dx+N(x, y)dy = 0 is homogeneous of grade n if M(x, y)
and N(x, y) are both homogeneous of the same degree.
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Similarly, if the equation can be expressed in the form y′ = G(x/y), change
x(y) = u(y) · y will be made.

Example.

(x3 + y3)dx− 3xy2dy = 0

The equation is homogeneous of grade 3. If we do the change y = ux, dy =
udx+ xdu, we have:

(x3 + u3x3)dx− 3xu2x2(udx+ xdu) = 0
x3(1 + u3 − 3u3)dx− 3x4u2du = 0

(1− 2u3)dx− 3xu2du = 0

If x 6= 0, and 1− 2u3 6= 0,

dx

x
=

3u2du

1− 2u3

log |x|+ 1

2
log |1− 2u3| = C ⇔

2 log |x|+ log |1− 2u3| = C1 ⇔
x2|1− 2u3| = C2

Exercises.

xdy − (y +
√
x2 − y2)dx = 0

y′ = − exp(y/x) + y/x

(x− y)ydx− x2dy = 0

2.3. Linear equations

A �rst order linear equation is one that can be expressed as follows:

a1(x)y′ + a0(x)y = b(x)

where a0(x), a1(x) and b(x) depend only on the independent variable x, and
not on y.

If it is assumed that a0(x), a1(x) and b(x) are continuous in an interval and
a1(x) 6= 0 in that interval, dividing by a1(x) we have:

y′ + P (x)y = Q(x)

where P (x) y Q(x) are continous functions in the integration interval.
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Thus, they are equations of the form: y′ + P (x)y = Q(x)

The general solution is:

exp

(
−
∫

(P (x)dx

){
C +

∫
[Q(x) · exp(

∫
P (x)dx)]dx

}
Example. The equation

x2 sin(x)− y cos(x) = sin(x)y′

is linear, because it can be written as:

(sinx)y′ + (cosx)y = x2 sinx

However, the equation

yy′ + (sinx)y3 = exp(x) + 1

is non-linear.

Therefore, the general expression of the solution is:

y(x) = yh(x) + yp(x)

where yh(x) is the solution of homogeneous equation and yp(x) is the particular
solution.

Homogeneous problem
y′ + P (x)y = 0

y′ + P (x)y = 0⇒
∫
dy

y
+

∫
P (x)dx = 0

ln y = −
∫
P (x)dx+ C ⇒

exp(ln y) = exp(−
∫
P (x)dx) · C1

yh(x) = C · exp(−
∫
P (x)dx)

Particular solution We consider functions of the form:

yp(x) = V (x) exp

(
−
∫
P (x)dx

)
⇒
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y′p(x) = V ′(x) exp

(
−
∫
P (x)dx

)
− V (x)P (x) exp

(
−
∫
P (x)dx

)
The solution must satisfy the equation, so

V ′(x)e−
∫
P (x)dx − V (x)P (x)e−

∫
P (x)dx + V (x)P (x)e−

∫
P (x)dx = Q(x)

and simplifying,

V ′(x)e−
∫
P (x)dx = Q(x)⇒ V ′(x) = e

∫
P (x)dx ·Q(x)

V (x) =

∫
Q(x)e

∫
P (x)dxdx,

So,

yp(x) = exp

(
−
∫
P (x)dx

)∫
Q(x) exp(

∫
P (x)dx))dx

General solution

y(x) = yh + yp = e−
∫
P (x)dx

{
C +

∫
[Q(x) · e

∫
P (x)dx]dx

}
Example.

y′ + y = x2

P (x) = 1 and Q(x) = x2

y(x) = e−
∫
dx

[
C +

∫
x2e

∫
dxdx

]
= e−xC + e−x

∫
x2exdx

Applying integration by parts (twice):∫
x2exdx =

 u=x2

dv=exdx
du=2xdx
v=ex

 = x2ex−2

∫
xexdx =

[ u=x
dv=exdx
du=dx
v=ex

]
= x2ex−2(xex−

∫
exdx) = (x2−2x+2)ex+K

y(x) = C · e−x + x2 − 2x+ 2

Exercises. {
(x2 + 1)y′ + 3xy = 6x

y(0) = 1{
x2y′ + xy = sinx

y(1) = 2
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2.4. Exact equations

Let P (x, y) and Q(x, y) be two continous real functions de�ned in a domain D
of the euclidean plane.

The di�erential equation

P (x, y)dx+Q(x, y)dy = 0

is exact if there is a real function F (x, y) de�ned in D, of class C(1) such that in
said domain:

∂F (x, y)

∂x
= P (x, y),

∂F (x, y)

∂y
= Q(x, y).

The general integral is F (x, y) = C.

So, exists a real function F (x, y) de�ned inD such that ∂F (x,y)
∂x

= P (x, y), ∂F (x,y)
∂y

=

Q(x, y).

Integrating with respect to x in the �rst equality:

F (x, y) =

∫
P (x, y)dx+ φ(y) = R(x, y) + φ(y).

Deriving with respecto to y,

∂F (x, y)

∂y
=
∂R(x, y)

∂y
+ φ′(y) = Q(x, y).

This last equality allows us to determine φ(y) and write the general integral in
the form F (x, y) = C.

Example.

(y cosx+ 2x · ey)dx+ (sinx+ x2ey + 2)dy = 0

∂P
∂y

= cosx+ 2xey

∂Q
∂x

= cosx+ 2xey

}
⇒ ∂P

∂y
=
∂Q

∂x

es is exact di�erential and therefore exists F (x, y).

F (x, y) =

∫
P (x, y)dx+φ(y) =

∫
(y cosx+2xey)dx+φ(y) = y sinx+x2ey+φ(y),

Then, it is necessary that:
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Q(x, y) =
∂F

∂y
= sinx+ x2ey + φ′(y) = sinx+ x2ey + 2,

so that
φ′(y) = 2⇒ φ(y) = 2y + C

and
F (x, y) = y sinx+ x2ey + 2y + C

Therefore, the solution is:

y sinx+ x2ey + 2y = C

Example.
2x

y3
dx+

y2 − 3x2

y4
dy = 0

It is exact because:
∂P

∂y
=
−6x

y4
=
∂Q

∂x

F (x, y) =

∫
P (x, y)dx+ φ(y) =

∫
2x

y3
dx+ φ(y) =

x2

y3
+ φ(y)

Q(x, y) =
∂F

∂y
⇒ −3x2y2

y6
+ φ′(y) =

y2 − 3x2

y4
,

−3x2y2

y6
+ φ′(y) =

1

y2
− 3x2

y4
⇒ φ′(y) =

1

y2
,

so that φ(y) = −1/y + C, being F (x, y) = x2

y3
− 1

y
+ C and therefore the solution

is:
x2

y3
− 1

y
= C

Exercise.

(2xy − sec2(x))dx+ (x2 + 2y)dy = 0

Prove that (x+ 3x3 sin y)dx+ (x4 cos y)dy = 0 is not exact, but multiplying by
factor x−1 , gives an exact di�erential.

P (x, y) = x+ 3x3 sin y ⇒ ∂P

∂y
= 3x3 cos y

Q(x, y) = x4 cos y ⇒ ∂Q

∂x
= 4x3 cos y

so it is not exact.
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Multiplying by x−1,

(1 + 3x2 sin y)dx+ (x3 cos y)dy = 0,

∂P

∂y
= 3x2 cos y =

∂Q

∂x

and now it is exact.

F (x, y) =

∫
(1 + 3x2 sin y)dx+ φ(y) = x+ x3 sin y + φ(y)

x3 cos y + φ′(y) = x3 cos y ⇒ φ′(y) = 0⇒ φ(y) = C,

obtaining
F (x, y) = x+ x3 sin y + C

The factor x−1 is called integrating factor.

2.5. Bernoulli equations

Bernoulli equations are equations of order one that can be expressed as:

y′ + p(x)y = q(x)yn

where p(x) and q(x) are continous in an interval (a, b) and n is a real number.

If n = 0 or n = 1, the equation is linear and can be solved as prevously
indicated. For the rest of the values of n, the variable change

u = y1−n

transforms the Bernoulli equation in a linear equation.

Veri�cation of variable change

Dividing the initial equation by yn, we have

y−ny′ + p(x)y1−n = q(x)

The change u = y1−n → u′ = (1− n)y−ny′

So,
1

1− n
u′ + p(x)u = q(x)

that is linear.
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Observation y = 0 is always solution for n > 0.

Example

y′ + y = y4

n = 4, p(x) = 1 and q(x) = 1
Suppose y(x) 6= 0,

y−4y′ + y−3 = 1 →u=y−3 u′ − 3u = −3

that is linear and its solution is u = 1 + Ce(−3x)

So, the solution is:
1

y3
= 1 + Ce−3x

Exercises.

y′ − 5y = −5

2
xy3

y′ =
y

x
+ y3

3. Linear ODEs of order n

Finally we are going to study di�erential equations of order n. These equations
are like this:

yn(x) + a1y
n−1(x) + · · ·+ any(x) = f(x)

where the coe�cients ai are constants and f(x) are real and continuous functions
in [x0, x1].

There are di�erent types:

If f(x) ≡ 0, it is an homogeneous equation

If f(x) 6= 0, it is an nonhomogeneous equation (or complete).

3.1. Homogeneous equation

First, we are going to see how to solve homogeneous linear equations of order
n. That is, equations of the following form:

yn(x) + a1y
n−1(x) + · · ·+ any(x) = 0
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We de�ne as characteristic polynomial of the equation yn(x)+a1y
n−1(x)+ · · ·+

any(x) = 0 the polynomial q(λ) = λn + a1λ
n−1 + · · ·+ an.

On the other hand, we de�ne characteristic equation to:

λn + a1λ
n−1 + · · ·+ an = 0

The solution of the homogeneous equation is related to the solution of the
characteristic equation.

If we solve the characteristic equation, we can obtain simple real solutions, real
with multiplicity greater than one or complex. The solution to the equation will
depend on what the roots are like.

1. If we have a real root λ0 ∈ R, the solution will be of the form:

y1(x) = eλ0x

2. If the polynomial has a real root λ1 ∈ R of multiplicity greater than one, for
example two, we will have two solutions of the form:

y1(x) = eλ1x, y2(x) = xeλ1x

3. If we have two complex conjugate roots, λ1 = α+β i, λ2 = α−β i;α, β ∈ R,
the solutions will be of the form:

y1(x) = cos(βx)eαx, y2(x) = sin(βx)eαx

The �nal solution of the homogeneous equation will be a linear combination of
the system of independent solutions previously obtained.

Example.

y′′ − y′ − 20y = 0

1. The characteristic polynomial is q(λ) = λ2 − λ− 20.

2. We calculate the solutions of q(λ) = 0. ∆ = 1 + 80 = 81 > 0 There are two
di�erent real solutions: λ1 = −4 and λ2 = 5.

3. The independent solutions are:

y1(x) = e−4x, y2(x) = e5x.
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4. Therefore, we do a linear combination and the �nal solution is:

y(x) = C1e
−4x + C2e

5x,

with C1 and C2 arbitrary real constants.

If we want to �nd the solution of a complete equation, we have to calculate a
particular solution,in addition to the homogeneous one. We are going to do it with
the method of indeterminate coe�cients.

3.2. Method of indeterminate coe�cients

To solve the following linear equation of constant coe�cients

y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0 = f(x),

the functions f(x) have to be as follows:

a polynomial, f(x) = Pn(x) = bnx
n + · · ·+ b1x+ b0,

an exponential function, f(x) = aebx,

a sine function, f(x) = a sin(b · x) or a cosine function, f(x) = a cos(b · x)

an additive or multiplicative combination of the others.

Depending on the expression of f(x), one of the solutions proposed in the
following table is chosen, with indeterminate coe�cients that must be adjusted
later.

independent term f(x) solution type yp(x) root
a α 0
axn α0 + α1x+ · · ·+ αnx

n = Pn(x) 0
Pn(x) α0 + α1x+ · · ·+ αnx

n 0
aebx αebx b
Pn(x)ebx (α0 + α1x+ · · ·+ αnx

n)ebx b
a sin(bx) α cos(bx) + β sin(bx) ±ib
a cos(bx) α cos(bx) + β sin(bx) ±ib
ceax sin(bx) (α cos(bx) + β sin(bx))eax a± ib
ceax cos(bx) (α cos(bx) + β sin(bx))eax a± ib
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Observation. If the independent term f(x) has a root that coincides with one
of the roots of the characteristic equation, with multiplicity m, the solution is that
of the table multiplied by xm.

Example.

y′′ + 2y′ + y = x2e3x

1. Function f(x) has a root in λ = 3, which does not coincide with those of the
characteristic polynomial (q(λ) = λ2 + 2λ+ 1 = (λ+ 1)2).

2. This function f(x) is of the type "power"by .exponential", so:

yp(x) = (a0 + a1x+ a2x
2)e3x.

3. Deriving and substituting in the di�erential equation, we have:

[(16a0 + 8a1 + 2a2) + (16a1 + 16a2)x+ 16a2x
2]e3x = x2e3x.

4. We match the proposed terms with the real values of the coe�cients in the
given equation,

16a0 + 8a1 + 2a2 = 0
16a1 + 16a2 = 0

16a2 = 1


5. Solving: a2 = 1/16, a1 = −1/16 y a0 = 3/128.

6. The particular solution is:

yp(x) =

(
3

128
− 1

16
x+

1

16
x2
)
e3x

Exercise.

y′′ − y = 3e−x

When the independent term is sum of functions f(x) = f1(x) + · · · + fr(x),
each particular solution is calculated separately and added by the superposition
principle.

The general solution of a complete equation is formed by calculating the ho-
mogeneous solution yh(x), the particular ones and adding them. That is to say:

y(x) = yh(x) + yp1(x) + · · ·+ ypr(x),
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.
Example.

y′′′ + 2y′′ − 4y′ − 8y = xe2x

The general solution is y = yh + yp.

The associated characteristic polynomial is q(λ) = λ3 + 2λ2− 4λ− 8, and their
roots are λ1 = 2,λ2 = −2 double. So, the homogeneous solution is:

yh(x) = C1e
2x + C2e

−2x + C3xe
−2x

On the other hand, the independent term is b(x) = xe2x, a = 2, b = 0.
As a = 2 is root of the characteristic polynomial with multiplicity s = 1 ⇒
yp(x) = xe2x(α + βx)

Deriving successively:

y′p(x) = αe2x + 2αxe2x + 2βxe2x + 2βx2e2x

yp
′′(x) = 4αe2x + 4αxe2x + 2βe2x + 8βxe2x + 4βx2e2x

yp
′′′(x) = 12αe2x + 8αxe2x + 12βe2x + 24βxe2x + 8βx2e2x

Substituting into the equation and grouping:

16αe2x + 40βxe2x + 16βe2x − 8βe2x = xe2x,

(16α + 16β)e2x + 32βxe2x = xe2x.

Solving:

(16α + 16β) = 0, 32β = 1 =⇒ β =
1

32
, α =

−1

32

yp(x) = − 1

32
xe2x +

1

32
x2e2x

y = C1e
2x + C2e

−2x + C3xe
−2x − 1

32
xe2x +

1

32
x2e2x
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3.3. Cauchy's problem

The general solution of an linear EDO depends on several arbitrary constants
Ci ∈ R. To determine these constants, we have to impose additional conditions. If
the conditions are at the same point, we have an Initial Value Problem, also called
Cauchy's problem.

Example.

PVI ≡

{
y′′ − 2y′ + 5y = 0

y(0) = 2 y′(0) = 0

1. We calculate the characteristic polynomial, q(λ) = λ2 − 2λ+ 5

2. Its roots, (∆ = 4 − 20 = −16 < 0) are complex conjugated: λ1 = 1 + 2i y
λ2 = 1− 2i

3. The general solution is

y(x) = ex(C1 cos(2x) + C2 sin(2x))

4. And imposing the initial conditions:

y(0) = 2⇒ C1 = 2

y′(0) = 0⇒ 2C2 + C1 = 0

So, we obtain C1 = 2 y C2 = −1.

The �nal solution of the Cauchy's problem is:

y(x) = ex
(
2 cos(2x)− sin(2x)

)
.
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