Advanced Calculus Partition of Unity

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

Let X be a topological space. A family $\{\tau_{\lambda}\}_{\lambda \in \Lambda}$ of continuous functions $\tau_{\lambda} : X \to [0, 1]$ is called a partition of unity if

 It is "locally finite", in the sense that every point x ∈ X has a neighborhood in which the τ_λ vanish for all but a finite number of λ.

2 For every
$$x \in X$$
 we have

$$\sum_{\lambda\in\Lambda} au_\lambda(x)=1$$

The partition of unity is said to be subordinate to a given open cover \mathcal{U} of X if for every λ the support of τ_{λ} i.e. the closure

Supp
$$\tau_{\lambda} = \overline{\{x \in X \mid \tau_{\lambda}(x) \neq 0\}}$$

is entirely contained in one of the sets of the covering.

Let M be an oriented *n*-dimensional manifold, and let $\{\tau_i\}_{i\in\mathbb{N}}$ be a partition of unity with each supp τ_i contained in the chart domain U_i of an orientation-preserving chart (U_i, h_i) . Then any *n*-form ω can be written as a locally finite sum $\omega = \sum_{i=1}^{\infty} \omega_i$, where

$$\omega_i = \tau_i . \omega$$

Let $\alpha_i : h_i(U_i) \to \mathbb{R}$ denote the downstairs component function

$$a_i = \omega_{1...n} \ o \ h_i^{-1}$$

in terms of (U_i, h_i) .

In this situation, ω is integrable if and only if each a_i is integrable on $h_i(U_i)$ and

$$\sum_{i=1}^{\infty}\int_{h_i(U_i)}|a_i|dx<\infty$$

Then

$$\int_{M} \omega = \sum_{i=1}^{\infty} \int_{h_i(U_i)} a_i dx$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶