Advanced Calculus Integration of Forms and Stokes' Theorem

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

Suppose ω is a *k*-form in an open set $E \subseteq \mathbb{R}^n$, Φ is a *k*-surface in E, with parameter domain $D \subseteq \mathbb{R}^k$, and Δ is the *k*-surface in \mathbb{R}^k , with parameter domain D, defined by $\Delta(\mathbf{u}) = \mathbf{u} \ (\mathbf{u} \in D)$. Then

$$\int_{\Phi} \omega = \int_{\Delta} \omega_{\Phi}$$

To give the general result, one needs to study the chains and orientations. The reader is encouraged to study 'Chapter 10. Simplexes and Chains' for details.

If Ψ is a *k*-chain of class \mathcal{C}'' (two times continuously differentiable) in an open set $V \subseteq \mathbb{R}^m$ and if ω is a (k-1)-form of class \mathcal{C}' in V, then

$$\int_{\Psi} d\omega = \int_{\partial \Psi} \omega$$

The case k = m = 1 is nothing but the fundamental theorem of calculus (with an additional differentiability assumption). The case k = m = 2 is called Green's theorem, and k = m = 3 gives the so called "divergence theorem" of Gauss. The case k = 2, m = 3 is the one originally discovered by Stokes.