Advanced Calculus Differential Forms and Differentiation of Forms

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

A differential form of degree k, or simply a k-form, on a manifold M is a correspondence ω that assigns to every $p \in M$ an alternating k-form $\omega_p \in Alt^k T_p M$ on the tangent space at p. The vector space of differentiable k-forms on M is denoted by $\Omega^k M$.

A differential form assigns an ω_p to each $p \in M$, and ω_p in turn assigns a number to each k-tuple of vectors in T_pM .

A differential 1-form is a function that sends paths to real numbers and which can be expressed as a path integral in the following notation:

$$\int_C f dx + g dy$$

The name of this particular differential 1-form is fdx + gdy.

Suppose *E* is an open set in \mathbb{R}^n . A differential form of order $k \ge 1$ in *E* (briefly, a *k*-form in *E*) is a function ω , symbolically represented hy the sum

$$\omega = \sum a_{i_1 \dots i_k}(\mathbf{x}) dx_{i_1} \dots dx_{i_k}$$

(the indices i_1, \ldots, i_k range independently from 1 to n), which assigns to each k-surface Φ in E a number $\omega(\Phi) = \int_{\Phi} \omega$, according to the rule

$$\int_{\Phi} \omega = \int_D \sum a_{i_1 \dots i_k} (\Phi(\mathbf{u})) \frac{\partial(x_{i_1} \dots x_{i_k})}{\partial(u_1 \dots u_k)} d\mathbf{u}$$

where D is the parameter domain of Φ and The functions $a_{i_1...i_k}$ are assumed to be real and continuous in E.

Products of basic k-forms and general forms

Suppose $I = \{i_1, \ldots, i_p\}$ and $J = \{j_1, \ldots, j_q\}$ where $1 \le i_1, \ldots, i_p \le n$ and $1 \le j_1, \ldots, j_q \le n$. The product of the corresponding basic forms dx_I and dx_J in \mathbb{R}^n is a (p+q)-form in \mathbb{R}^n , denoted by the symbol $dx_I \land dx_J$, and de fined by

$$dx_I \wedge dx_J = dx_{i_1} \wedge \ldots dx_{i_p} \wedge dx_{j_1} \wedge \ldots dx_{j_q}$$

f I and J have an element i n common, then $dx_I \wedge dx_J = 0$.

Suppose ω and λ are *p*- and *q*-forms, respectively, in some open set $E \subseteq \mathbb{R}^n$, with standard presentations

$$\omega = \sum_{I} b_{I}(\mathbf{x}) dx_{I}, \ \lambda = \sum_{J} c_{J}(\mathbf{x}) dx_{J}$$

where I and J range over all increasing p-indices and q-indices. Then

$$\omega \wedge \lambda = \sum_{I,J} b_I(\mathbf{x}) c_J(\mathbf{x}) dx_I \wedge dx_J$$

伺 ト イヨ ト イヨト

A differentiation operator d associates a (k + 1)-form dw to each k-form ro of class C' (the class of continuously differentiable functions) in some open set $E \subseteq \mathbb{R}^n$.

A 0-form of class C' in E is just a real function $f \in C'(E)$, and we define

$$d\omega = \sum_{i=1}^{n} (D_i f)(\mathbf{x}) dx_i$$

If $\omega = \sum_{I} b_{I}(\mathbf{x}) dx_{I}$ is the standard presentation of a *k*-form ro, and $b_{I} \in \mathcal{C}'(E)$ for each increasing *k*-index *I*, then we define

$$d\omega = \sum_{I} (db_{I}) \wedge dx_{I}$$

• If ω and λ are k- and m-forms, respectively, of class $\mathcal{C}'(E)$, then

$$d(\omega \wedge \lambda) = d\omega \wedge \lambda + (-1)^n \omega \wedge d\lambda$$

• If ω is of class $\mathcal{C}'(E)$, then $d^2\omega = d(d\omega) = 0$.