Advanced Calculus

Cauchy-Riemann Equations and Implications

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

Cauchy-Riemann Equations

For a function $f: \mathbb{C} \rightarrow \mathbb{C}$ we can split its real and imaginary parts and for $z=x+i y$ we have $f(z)=u(x, y)+i v(x, y)$ and we can consider f as a function from \mathbb{R}^{2} to \mathbb{R}^{2}. In this case if the function f is totally differentiable at $a \in D \subseteq \mathbb{R}^{2}$ (D open), we know that then the partial derivatives of u and v exist at a and the Jacobian is given by

$$
\left(\begin{array}{ll}
\frac{\partial u}{\partial x}(a) & \frac{\partial v}{\partial x}(a) \\
\frac{\partial u}{\partial y}(a) & \frac{\partial v}{\partial y}(a)
\end{array}\right)
$$

Considering this and the Theorem above we can say that:

Cauchy-Riemann Equations

For a function $f: D \rightarrow \mathbb{C}, D \subseteq \mathbb{C}$ open, $a \in D$ the following two statements are equivalent:

- f is complex differentiable at a.
- f is totally differentiable at a in the sense of real analysis $\left(\mathbb{C}=\mathbb{R}^{2}\right)$, and for $u:=\mathfrak{R e}(f)$ and $v:=\mathfrak{I m}(f)$ the following differential equations hold:

$$
\frac{\partial u}{\partial x}(a)=\frac{\partial v}{\partial y}(a) \text { and } \frac{\partial u}{\partial y}(a)=-\frac{\partial v}{\partial x}(a)
$$

or simply as

$$
u_{x}=v_{y} \text { and } u_{y}=-v_{x}
$$

In case that one of the above holds we have:

$$
f^{\prime}(a)=u_{x}(a)+i v_{x}(a)=v_{y}(a)-i u_{y}(a)
$$

Complex Differentiation: Examples

Example: For $f(z)=z^{2}$, we have $f^{\prime}(z)=2 z$.
Let's split f into real and imaginary parts and study the Cauchy-Riemann equations. We have $f(x+i y)=(x+i y)^{2}=\left(x^{2}-y^{2}\right)+i(2 x y)$ and thus $u(x, y)=x^{2}-y^{2}$ and $v(x, y)=2 x y$. We have:

$$
u_{x}=2 x=v_{y} \text { and } u_{y}=-2 y=-v_{x}
$$

So we have $f^{\prime}(x+i y)=2 x+i(2 y)=2(x+i y)$ which is consistent with what we calculated before.

Characterization of locally constant functions

Let $f: D \rightarrow \mathbb{C}, D \subseteq \mathbb{C}$ open, then the followings are equivalent:

- f is locally constant in D (in other words, f is constant in some neighborhood of any point of D).
- f is complex differentiable for all $z \in D$ and

$$
f^{\prime}(z)=0 \text { for all } z \in D
$$

Note that if f is a complex differentiable function that has only real values, it follows from the Cauchy-Riemann equations that the derivative of f vanishes, and thus the function f is locally constant. This shows that complex differentiability is a strong restriction.

Example: The functions $f(z)=|\sin z|$ and $g(z)=\mathfrak{R e}(z)$ are not complex differentiable in \mathbb{C}. (why?)

