Advanced Calculus Cauchy-Riemann Equations and Implications

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

For a function $f : \mathbb{C} \to \mathbb{C}$ we can split its real and imaginary parts and for z = x + iy we have f(z) = u(x, y) + iv(x, y) and we can consider f as a function from \mathbb{R}^2 to \mathbb{R}^2 . In this case if the function f is totally differentiable at $a \in D \subseteq \mathbb{R}^2$ (D open), we know that then the partial derivatives of u and v exist at a and the Jacobian is given by

$$\begin{pmatrix} \frac{\partial u}{\partial x}(a) & \frac{\partial v}{\partial x}(a) \\ \frac{\partial u}{\partial y}(a) & \frac{\partial v}{\partial y}(a) \end{pmatrix}$$

Considering this and the Theorem above we can say that:

Cauchy-Riemann Equations

For a function $f : D \to \mathbb{C}$, $D \subseteq \mathbb{C}$ open, $a \in D$ the following two statements are equivalent:

- f is complex differentiable at a.
- f is totally differentiable at a in the sense of real analysis (C = R²), and for u := ℜe(f) and v := ℑm(f) the following differential equations hold:

$$rac{\partial u}{\partial x}(a) = rac{\partial v}{\partial y}(a)$$
 and $rac{\partial u}{\partial y}(a) = -rac{\partial v}{\partial x}(a)$

or simply as

$$u_x = v_y$$
 and $u_y = -v_x$

In case that one of the above holds we have:

$$f'(a) = u_x(a) + iv_x(a) = v_y(a) - iu_y(a)$$

Example: For $f(z) = z^2$, we have f'(z) = 2z.

Let's split f into real and imaginary parts and study the Cauchy-Riemann equations. We have $f(x + iy) = (x + iy)^2 = (x^2 - y^2) + i(2xy)$ and thus $u(x, y) = x^2 - y^2$ and v(x, y) = 2xy. We have:

$$u_x=2x=v_y$$
 and $u_y=-2y=-v_x$

So we have f'(x + iy) = 2x + i(2y) = 2(x + iy) which is consistent with what we calculated before.

Let $f : D \to \mathbb{C}$, $D \subseteq \mathbb{C}$ open, then the followings are equivalent:

- f is locally constant in D (in other words, f is constant in some neighborhood of any point of D).
- f is complex differentiable for all $z \in D$ and

$$f'(z) = 0$$
 for all $z \in D$

Note that if f is a complex differentiable function that has only real values, it follows from the Cauchy-Riemann equations that the derivative of f vanishes, and thus the function f is locally constant. This shows that complex differentiability is a strong restriction.

Example: The functions $f(z) = |\sin z|$ and $g(z) = \Re \mathfrak{e}(z)$ are not complex differentiable in \mathbb{C} . (why?)