Advanced Calculus
 Differentiation of Complex Functions

ThinkBS: Basic Sciences in Engineering Education
Kadir Has University, Turkey

Differentiation of Complex Functions

Let's review the definition of derivative for a function $f: E \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Pick $\mathbf{x} \in E$. If there exists a linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that

$$
\lim _{h \rightarrow 0} \frac{|f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-L \mathbf{h}|}{|\mathbf{h}|}=0
$$

then we say that f is differentiable at \mathbf{x}, and we write $f^{\prime}(\mathbf{x})=L$.
If we consider $\mathbb{C}=\mathbb{R} \times \mathbb{R}$ then there are much similarities between complex derivative and real derivative. The formulation is almost the same but one must remember that the divisions and norms are complex.

Differentiation of Complex Functions

Take $D \subseteq \mathbb{C}$. A function $f: D \rightarrow \mathbb{C}$ is said to be (complex) differentiable at the point $a \in D$ iff the following limit exists:

$$
\lim _{z \rightarrow a} \frac{f(z)-f(a)}{z-a}
$$

We denote this (complex) value by $f^{\prime}(a)$.
If f is differentiable at each point of D, then one can consider the complex derivative as a function on D :

$$
\begin{aligned}
f^{\prime}: & \rightarrow \mathbb{C} \\
& z \mapsto f^{\prime}(z)
\end{aligned}
$$

In the special case that $D=[a, b] \subseteq \mathbb{R}$, we can write $f(x)=u(x)+i v(x)$. In this case $f^{\prime}(x)=u^{\prime}(x)+i v^{\prime}(x)$.

Equivalent formulations of Complex Derivation

Assume that $a \in D \subseteq \mathbb{C}$ is an accumulation point, $f: D \rightarrow \mathbb{C}$ and $I \in \mathbb{C}$. Then the following statements are equivalent:

- f is complex differentiable at a, and there has the derivative $/$ $\left(f^{\prime}(a)=I\right)$.
- There exists a function $\phi: D \rightarrow \mathbb{C}$ which is continuous at a such that

$$
f(z)=f(a)+\phi(z)(z-a) \text { and } \phi(a)=1
$$

- There exists a function $\rho: D \rightarrow \mathbb{C}$ which is continuous at a such that

$$
f(z)=f(a)+I(z-a)+\rho(z)(z-a) \text { and } \rho(a)=0
$$

- If one defines $r: D \rightarrow \mathbb{C}$ by the equation

$$
f(z)=f(a)+l(z-a)+r(z) \text { then }
$$

$$
\lim _{z \rightarrow a} \frac{r(z)}{z-a}=0 \text { or equivalently } \lim _{z \rightarrow a} \frac{r(z)}{|z-a|}=0
$$

Properties of Complex Derivative

Let the functions $f, g: D \subseteq \mathbb{C} \rightarrow \mathbb{C}$ be complex differentiable at $a \in D$ and $\lambda \in \mathbb{C}$. Then the functions:

- $f+g$ is complex differentiable at a, and

$$
(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)
$$

- λf is complex differentiable at a, and $(\lambda f)^{\prime}(a)=\lambda f^{\prime}(a)$
- $f g$ is complex differentiable at a, and $(f g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$
- If $g(a)=\neq 0, \frac{f}{g}$, is complex differentiable at a, and

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g^{2}(a)}
$$

Complex Derivative and Totally Differentiable Functions

As we have seen before, we call a function $f: D \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ totally differentiable at a point $a \in D$ if there exists an \mathbb{R}-linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ such that such that

$$
f(\mathbf{x})=f(a)+L(\mathbf{x}-a)+r(\mathbf{x})
$$

with $\lim _{\mathrm{x} \rightarrow \mathrm{a}} \frac{r(\mathbf{x})}{|\mathrm{x}-\mathrm{a}|}=0$. Here, $|\mathbf{x}-a|$ denotes the Euclidean distance between x and a.

The linear map L is uniquely determined and is called the Jacobian of f at a or the total differential of f at a, or the tangent map to f at a.

Complex Derivative and Totally Differentiable Functions

For a function $f: D \rightarrow \mathbb{C}, D \subseteq \mathbb{C}$ open, $a \in D$, the following two statements are equivalent:

- f is complex differentiable at a.
- f is totally differentiable at a (in the sense of real analysis by considering $\mathbb{C}=\mathbb{R} \times \mathbb{R}$), and the Jacobian $L: \mathbb{C} \rightarrow \mathbb{C}$ is of the form

$$
L(z)=I . z
$$

with I a suitable complex number. Of course the number I is the derivative $f^{\prime}(a)=1$.

Complex Derivative and Totally Differentiable Functions

Here a question rises: When is an R-linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ also \mathbb{C}-linear? In other words for which \mathbb{R}-linear maps $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ exists a complex number $I \in \mathbb{C}=\mathbb{R}^{2}$ such that

$$
L(z)=I z
$$

Theorem: For an R-linear map $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ the following four statements are equivalent:

- There exists a complex number $/$ with $L(z)=I z$.
- L is \mathbb{C}-linear.
- $L(i)=i L(1)$.
- The matrix with respect to the canonical basis $1=(1,0)$ and $i=(0,1)$ has the special form

$$
\left(\begin{array}{cc}
\alpha & -\beta \\
\beta & \alpha
\end{array}\right) \quad \alpha, \beta \in \mathbb{R}
$$

