Advanced Calculus

Riemann and Darboux Integrals: Theorems

ThinkBS: Basic Sciences in Engineering Education
Kadir Has University, Turkey

Theorems About Existence of Integral

- If f is continuous on $[a, b]$ then $f \in \mathcal{R}(\alpha)$ on $[a, b]$.
- If f is monotonic on $[a, b]$, and if α is continuous (and monotonic) on $[a, b]$, then $f \in \mathcal{R}(\alpha)$ on $[a, b]$.
- Suppose f is bounded on $[a, b], f$ has only finitely many points of discontinuity on $[a, b]$, and α is continuous at every point at which f is discontinuous. Then $f \in \mathcal{R}(\alpha)$ on [a, b].
- If $f \in \mathcal{R}$ on $[a, b]$ then f is bounded on $[a, b]$.
- Suppose $f \in \mathcal{R}(\alpha)$ on $[a, b], m<f<M, g$ is continuous on [m, M], and $h(x)=g(f(x))$ on $[a, b]$. Then $h \in \mathcal{R}(\alpha)$ on $[a, b]$.
- If $f \in \mathcal{R}(\alpha)$ then $|f| \in \mathcal{R}(\alpha)$, but the converse is not true. (why?) Also $\left|\int_{a}^{b} f d \alpha\right| \leq \int_{a}^{b}|f| d \alpha$.
- If f and $g \in \mathcal{R}(\alpha)$ on $[a, b]$ and $c \in \mathbb{R}$, then $f+g \in \mathcal{R}(\alpha)$ and $c f \in \mathcal{R}(\alpha)$. Also

$$
\int_{a}^{b}(f+g) d \alpha=\int_{a}^{b} f d \alpha+\int_{a}^{b} g d \alpha, \int_{a}^{b} c f d \alpha=c \int_{a}^{b} f d \alpha
$$

- If $f(x) \leq g(x)$ on $[a, b]$ and $f, g \in \mathcal{R}(\alpha)$ then

$$
\int_{a}^{b} f d \alpha \leq \int_{a}^{b} g d \alpha
$$

- If $f \in \mathcal{R}(\alpha)$ on $[a, b]$ and $a<c<b$ then $f \in \mathcal{R}(\alpha)$ on $[a, c]$ and $[c, b]$ and

$$
\int_{a}^{b} f d \alpha=\int_{a}^{c} f d \alpha+\int_{c}^{b} f d \alpha
$$

- If $f \in \mathcal{R}(\alpha)$ on $[a, b]$ and if $|f(x)| \leq M$ on $[a, b]$ then

$$
\left|\int_{a}^{b} f d \alpha\right| \leq M(\alpha(b)-\alpha(a))
$$

- If f and $g \in \mathcal{R}(\alpha)$ on $[a, b]$ then $f g \in \mathcal{R}(\alpha)$ on $[a, b]$ and also Cauchy-Bunyakovsky-Schwarz inequality for integrals holds:

$$
\left(\int_{a}^{b} f g d \alpha\right)^{2} \leq\left(\int_{a}^{b} f^{2} d \alpha\right)\left(\int_{a}^{b} g^{2} d \alpha\right)
$$

- If $f \in \mathcal{R}\left(\alpha_{1}\right)$ and $f \in \mathcal{R}\left(\alpha_{2}\right)$ on [a,b] and $c \in \mathbb{R}^{>0}$, then $f \in \mathcal{R}\left(\alpha_{1}+\alpha_{2}\right)$ and $f \in \mathcal{R}\left(c \alpha_{1}\right)$ and we have

$$
\int_{a}^{b} f d\left(\alpha_{1}+\alpha_{2}\right)=\int_{a}^{b} f d \alpha_{1}+\int_{a}^{b} f d \alpha_{2}, \int_{a}^{b} f d\left(c \alpha_{1}\right)=c \int_{a}^{b} f d \alpha_{1}
$$

Use of Integrals as Series

We have said that integration is in fact a continuous infinite summation, so this means it is a generalization of infinite sums. To see this claim define unit step function I as following:

$$
I(x)=\left\{\begin{array}{l}
0 \text { if } x \leq 0 \\
1 \text { if } x>0
\end{array}\right.
$$

Then if $a<s<b, f$ is bounded on $[a, b], f$ is continuous at s, and $\alpha(x)=I(x-s)$, then

$$
\int_{a}^{b} f d \alpha=f(s)
$$

Use of Integrals as Series

Now Suppose $\left\{c_{n}\right\}_{n=1}^{\infty}$ is a non-negative sequence $\left(c_{n} \geq 0\right), \sum c_{n}$ converges, $\left\{s_{n}\right\}_{n=1}^{\infty}$ is a sequence of distinct points in (a, b), and

$$
\alpha(x)=\sum_{n=1}^{\infty} c_{n} I\left(x-s_{n}\right)
$$

Let f be continuous on $[a, b]$. Then

$$
\int_{a}^{b} f d \alpha=\sum_{n=1}^{\infty} c_{n} f\left(s_{n}\right)
$$

Assume α increases monotonically and $\alpha^{\prime} \in \mathcal{R}$ on $[a, b]$. Let f be a bounded real function on $[a, b]$.
Then $f \in \mathcal{R}(\alpha)$ if and only if $f \alpha^{\prime} \in \mathcal{R}$. In that case

$$
\int_{a}^{b} f d \alpha=\int_{a}^{b} f(x) \alpha^{\prime}(x) d x
$$

If α is a step function, the integral reduces to a finite or infinite series. If α has an integrable derivative, the integral reduces to an ordinary Riemann integral. This makes it possible in many cases to study series and integrals simultaneously.

Change of Variable

Suppose ϕ is a strictly increasing continuous function that maps an interval $[A, B]$ onto $[a, b]$. Suppose α is monotonically increasing on $[a, b]$ and $f \in \mathcal{R}(\alpha)$ on $[a, b]$. Define β and g on $[A, B]$ by

$$
\beta(y)=\alpha(\phi(y)), \quad g(y)=f(\phi(y))
$$

Then $g \in \mathcal{R}(\beta)$ and

$$
\int_{A}^{B} g d \beta=\int_{a}^{b} f d \alpha
$$

Integration and Differentiation

Let $f \in \mathcal{R}(\alpha)$ on $[a, b]$. For $a \leq x \leq b$ put

$$
F(x)=\int_{a}^{x} f(t) d t
$$

Then F is uniformly continuous on $[a, b]$; furthermore, if f is continuous at a point $x_{0} \in[a, b]$, then F is differentiable at x_{0}, and

$$
F^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)
$$

Let $f \in \mathcal{R}(\alpha)$ on $[a, b]$ and if there is a differentiable function F on $[a, b]$ such that $F^{\prime}=f(F$ is called the anti-derivative of $f)$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)=[F(x)]_{a}^{b}
$$

This theorem connects two concepts: On one hand we have a infinite (continuous) summation and on the other hand we have an operation which is inverse of taking derivative (anti-derivative!) At first it may seem they are completely irrelevant subjects but due to Fundamental Theorem they are quite related!

Integration by Parts

Suppose F and G are differentiable functions on $[a, b]$, $F^{\prime}=f \in \mathcal{R}, G^{\prime}=g \in \mathcal{R}$. Then

$$
\int_{a}^{b} F(x) g(x) d x=F(b) G(b)-F(a) G(a)-\int_{a}^{b} f(x) G(x) d x
$$

Examples

Example 1: Define $\alpha(x)=1$. Then $\int_{2}^{3} x^{2} d \alpha=0$. (why?)

Examples

Example 1: Define $\alpha(x)=1$. Then $\int_{2}^{3} x^{2} d \alpha=0$. (why?)
Example 2: Define $\alpha(x)=x^{2}$. Then $\int_{1}^{2} \frac{1}{x} d \alpha=\int_{1}^{2} \frac{1}{x}(2 x) d x=2$.

Examples

Example 1: Define $\alpha(x)=1$. Then $\int_{2}^{3} x^{2} d \alpha=0$. (why?)
Example 2: Define $\alpha(x)=x^{2}$. Then $\int_{1}^{2} \frac{1}{x} d \alpha=\int_{1}^{2} \frac{1}{x}(2 x) d x=2$.
Example 3: Define $\alpha(x)=x$. Then
$\int_{0}^{\frac{\pi}{2}}(\sin x)^{2} \cos x d x=\int_{0}^{1} u^{2} d u=\left[\frac{u^{3}}{3}\right]_{0}^{1}=\frac{1^{3}}{3}-\frac{0^{3}}{3}=\frac{1}{3}$.
Here we used both change of variable and Fundamental theorem.

Examples

Example 4: First we define $\int_{a}^{b} f=-\int_{b}^{a} f$ and $\int_{a}^{a} f=0$.
Consider $x>0$. We define

$$
\log x=\int_{1}^{x} \frac{1}{t} d t
$$

Here $\log x$ is a continuous function on $(0, \infty)$ (why?) and also

$$
(\log x)^{\prime}=\frac{1}{x}
$$

