Advanced Calculus Riemann and Darboux Integrals: Theorems

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

Theorems About Existence of Integral

- If f is continuous on [a, b] then $f \in \mathcal{R}(\alpha)$ on [a, b].
- If f is monotonic on [a, b], and if α is continuous (and monotonic) on [a, b], then f ∈ R(α) on [a, b].
- Suppose f is bounded on [a, b], f has only finitely many points of discontinuity on [a, b], and α is continuous at every point at which f is discontinuous. Then $f \in \mathcal{R}(\alpha)$ on [a, b].
- If $f \in \mathcal{R}$ on [a, b] then f is bounded on [a, b].
- Suppose $f \in \mathcal{R}(\alpha)$ on [a, b], m < f < M, g is continuous on [m, M], and h(x) = g(f(x)) on [a, b]. Then $h \in \mathcal{R}(\alpha)$ on [a, b].
- If f ∈ R(α) then |f| ∈ R(α), but the converse is not true. (why?) Also | ∫_a^b fdα| ≤ ∫_a^b |f|dα.

Properties of Integral

• If f and $g \in \mathcal{R}(\alpha)$ on [a, b] and $c \in \mathbb{R}$, then $f + g \in \mathcal{R}(\alpha)$ and $cf \in \mathcal{R}(\alpha)$. Also

$$\int_{a}^{b} (f+g) d\alpha = \int_{a}^{b} f d\alpha + \int_{a}^{b} g d\alpha, \quad \int_{a}^{b} c f d\alpha = c \int_{a}^{b} f d\alpha$$

• If $f(x) \leq g(x)$ on [a, b] and $f, g \in \mathcal{R}(lpha)$ then

$$\int_{a}^{b} \mathbf{f} d\alpha \leq \int_{a}^{b} \mathbf{g} d\alpha$$

• If $f \in \mathcal{R}(\alpha)$ on [a, b] and a < c < b then $f \in \mathcal{R}(\alpha)$ on [a, c]and [c, b] and

$$\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{c}^{b} f d\alpha$$

Properties of Integral

- If $f \in \mathcal{R}(\alpha)$ on [a, b] and if $|f(x)| \le M$ on [a, b] then $|\int_{a}^{b} fd\alpha| \le M(\alpha(b) - \alpha(a))$
- If f and g ∈ R(α) on [a, b] then fg ∈ R(α) on [a, b] and also Cauchy–Bunyakovsky–Schwarz inequality for integrals holds:

$$(\int_{a}^{b} fg d\alpha)^{2} \leq (\int_{a}^{b} f^{2} d\alpha) (\int_{a}^{b} g^{2} d\alpha)$$

• If $f \in \mathcal{R}(\alpha_1)$ and $f \in \mathcal{R}(\alpha_2)$ on [a, b] and $c \in \mathbb{R}^{>0}$, then $f \in \mathcal{R}(\alpha_1 + \alpha_2)$ and $f \in \mathcal{R}(c\alpha_1)$ and we have

$$\int_{a}^{b} fd(\alpha_{1}+\alpha_{2}) = \int_{a}^{b} fd\alpha_{1} + \int_{a}^{b} fd\alpha_{2}, \quad \int_{a}^{b} fd(c\alpha_{1}) = c \int_{a}^{b} fd\alpha_{1}$$

We have said that integration is in fact a continuous infinite summation, so this means it is a generalization of infinite sums. To see this claim define unit step function *I* as following:

$$I(x) = \begin{cases} 0 \text{ if } x \le 0\\ 1 \text{ if } x > 0 \end{cases}$$

Then if a < s < b, f is bounded on [a, b], f is continuous at s, and $\alpha(x) = I(x - s)$, then

$$\int_{a}^{b} f d\alpha = f(s)$$

Now Suppose $\{c_n\}_{n=1}^{\infty}$ is a **non-negative** sequence $(c_n \ge 0)$, $\sum c_n$ converges, $\{s_n\}_{n=1}^{\infty}$ is a sequence of distinct points in (a, b), and

$$\alpha(x) = \sum_{n=1}^{\infty} c_n I(x - s_n)$$

Let f be continuous on [a, b]. Then

$$\int_a^b f d\alpha = \sum_{n=1}^\infty c_n f(s_n)$$

Assume α increases monotonically and $\alpha' \in \mathcal{R}$ on [a, b]. Let f be a bounded real function on [a, b]. Then $f \in \mathcal{R}(\alpha)$ if and only if $f\alpha' \in \mathcal{R}$. In that case

$$\int_{a}^{b} f d\alpha = \int_{a}^{b} f(x) \alpha'(x) dx$$

If α is a step function, the integral reduces to a finite or infinite series. If α has an integrable derivative, the integral reduces to an ordinary Riemann integral. This makes it possible in many cases to study series and integrals simultaneously.

Suppose ϕ is a strictly increasing continuous function that maps an interval [A, B] onto [a, b]. Suppose α is monotonically increasing on [a, b] and $f \in \mathcal{R}(\alpha)$ on [a, b]. Define β and g on [A, B] by

$$\beta(y) = \alpha(\phi(y)), \quad g(y) = f(\phi(y))$$

Then $g \in \mathcal{R}(\beta)$ and

$$\int_{A}^{B} g d\beta = \int_{a}^{b} f d\alpha$$

Let $f \in \mathcal{R}(\alpha)$ on [a, b]. For $a \leq x \leq b$ put

$$F(x) = \int_{a}^{x} f(t) dt$$

Then F is uniformly continuous on [a, b]; furthermore, if f is continuous at a point $x_0 \in [a, b]$, then F is differentiable at x_0 , and

$$F'(x_0)=f(x_0)$$

Let $f \in \mathcal{R}(\alpha)$ on [a, b] and if there is a differentiable function F on [a, b] such that F' = f (F is called the anti-derivative of f), then

$$\int_a^b f(x) dx = F(b) - F(a) = [F(x)]_a^b$$

This theorem connects two concepts: On one hand we have a infinite (continuous) summation and on the other hand we have an operation which is inverse of taking derivative (anti-derivative!) At first it may seem they are completely irrelevant subjects but due to Fundamental Theorem they are quite related!

Suppose F and G are differentiable functions on [a, b], $F' = f \in \mathcal{R}$, $G' = g \in \mathcal{R}$. Then

$$\int_{a}^{b} F(x)g(x)dx = F(b)G(b) - F(a)G(a) - \int_{a}^{b} f(x)G(x)dx$$

Example 1: Define $\alpha(x) = 1$. Then $\int_2^3 x^2 d\alpha = 0$. (why?)

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

A ≥ ►

Example 1: Define $\alpha(x) = 1$. Then $\int_2^3 x^2 d\alpha = 0$. (why?) **Example 2**: Define $\alpha(x) = x^2$. Then $\int_1^2 \frac{1}{x} d\alpha = \int_1^2 \frac{1}{x} (2x) dx = 2$. **Example 1**: Define $\alpha(x) = 1$. Then $\int_2^3 x^2 d\alpha = 0$. (why?) **Example 2**: Define $\alpha(x) = x^2$. Then $\int_1^2 \frac{1}{x} d\alpha = \int_1^2 \frac{1}{x} (2x) dx = 2$. **Example 3**: Define $\alpha(x) = x$. Then $\int_0^{\frac{\pi}{2}} (\sin x)^2 \cos x dx = \int_0^1 u^2 du = [\frac{u^3}{3}]_0^1 = \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}$. Here we used both change of variable and Fundamental theorem. **Example 4**: First we define $\int_{a}^{b} f = -\int_{b}^{a} f$ and $\int_{a}^{a} f = 0$. Consider x > 0. We define

$$\log x = \int_1^x \frac{1}{t} dt$$

Here log x is a continuous function on $(0,\infty)$ (why?) and also

$$(\log x)' = \frac{1}{x}$$

< 同 ト < 三 ト < 三 ト