Advanced Calculus Differentiation Rules

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

Assume that $c \in \mathbb{R}$ and f and g are real-valued functions defined on an interval I and both are differentiable, then the following functions are differentiable and we have:

•
$$(f+g)' = f' + g'$$

• $(cf)' = cf'$
• $(fg)' = f'g + g'f$
• $(\frac{f}{g})' = \frac{f'g - g'f}{g^2}$ where $g \neq 0$.
Assume $f: I \to \mathbb{R}, g: J \to \mathbb{R}$ and $f(I) \subset J$, if f is differentiable at $x \in I$ and g is differentiable at $f(x) \in J$, then according to **the**
chain rule, the composite function gof is differentiable at x and
we have

$$(gof)'(x) = g'(f(x)).f'(x)$$

Differentiation Rules

Let I ≠ Ø be an open interval and let f : I → ℝ be an injective, continuous function. If f is differentiable at x₀ ∈ I and f'(x₀) ≠ 0 then the inverse function f⁻¹ is differentiable at y₀ = f(x₀) and we have

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$

- Assume that f : I → ℝ is differentiable at point x ∈ I, then it can be shown that f must be continuous at x. Is the converse also true?
- If f : [a, b] → ℝ and f'(x) = 0 for all x ∈ (a, b), then f is a constant function on [a, b]. Can you geometrically interpret this result?

Use of Differentiation Rules

Assume
$$f(x) = \begin{cases} x \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$

Show that for all $x \neq 0$ we

have:

$$f'(x) = \sin(\frac{1}{x}) - \frac{1}{x}\cos(\frac{1}{x})$$

but f is not differentiable at x = 0.

This is another example of a function which is continuous everywhere and is differentiable everywhere except one point. Here f' is also continuous everywhere except x = 0.

Use of Differentiation Rules

.

Assume
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$$
 Show that for all $x \neq 0$ we

have:

٠

$$f'(x) = 2x\sin(\frac{1}{x}) - \cos(\frac{1}{x})$$

and for x = 0 we have

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{x^2 \sin(\frac{1}{x})}{x} = 0$$

Hence f is differentiable for all $x \in \mathbb{R}$. We should note that the derivative function f' is not continuous at x = 0.

▶ ∢ ≣ ▶

Use of Differentiation Rules

The function log : $(0, \infty) \to \mathbb{R}$ (Natural Logarithm) is the inverse function of $f(x) = e^x$. Since for all $x \in \mathbb{R}$, $(e^x)' = e^x$ and $e^x > 0$, we can calculate the derivative of log on its domain as:

$$(\log x)' = \frac{1}{exp'(\log x)} = \frac{1}{exp(\log x)} = \frac{1}{x}$$

Similarly, we have $(\log |x|)' = \frac{1}{x}$ for all $x \in \mathbb{R} \setminus \{0\}$.

One can also use this result and the chain rule to show that if $u: I \to \mathbb{R}$ is differentiable and u is not zero on I, then $\log(|u(x)|)$ is differentiable on I and:

$$(\log|u(x)|)' = \frac{u'(x)}{u(x)}$$