Advanced Calculus Differentiation Rules

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

Differentiation Rules

Assume that $c \in \mathbb{R}$ and f and g are real-valued functions defined on an interval $/$ and both are differentiable, then the following functions are differentiable and we have:

- $(f+g)^{\prime}=f^{\prime}+g^{\prime}$
- $(c f)^{\prime}=c f^{\prime}$
- $(f g)^{\prime}=f^{\prime} g+g^{\prime} f$
- $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-g^{\prime} f}{g^{2}}$ where $g \neq 0$.

Assume $f: I \rightarrow \mathbb{R}, g: J \rightarrow \mathbb{R}$ and $f(I) \subset J$, if f is differentiable at $x \in I$ and g is differentiable at $f(x) \in J$, then according to the chain rule, the composite function gof is differentiable at x and we have

$$
(g \circ f)^{\prime}(x)=g^{\prime}(f(x)) \cdot f^{\prime}(x)
$$

Differentiation Rules

- Let $I \neq \emptyset$ be an open interval and let $f: I \rightarrow \mathbb{R}$ be an injective, continuous function. If f is differentiable at $x_{0} \in I$ and $f^{\prime}\left(x_{0}\right) \neq 0$ then the inverse function f^{-1} is differentiable at $y_{0}=f\left(x_{0}\right)$ and we have

$$
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}=\frac{1}{f^{\prime}\left(f^{-1}\left(y_{0}\right)\right)}
$$

- Assume that $f: I \rightarrow \mathbb{R}$ is differentiable at point $x \in I$, then it can be shown that f must be continuous at x. Is the converse also true?
- If $f:[a, b] \rightarrow \mathbb{R}$ and $f^{\prime}(x)=0$ for all $x \in(a, b)$, then f is a constant function on $[a, b]$. Can you geometrically interpret this result?

Use of Differentiation Rules

Assume $f(x)=\left\{\begin{array}{ll}x \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ Show that for all $x \neq 0$ we have:

$$
f^{\prime}(x)=\sin \left(\frac{1}{x}\right)-\frac{1}{x} \cos \left(\frac{1}{x}\right)
$$

but f is not differentiable at $x=0$.
This is another example of a function which is continuous everywhere and is differentiable everywhere except one point. Here f^{\prime} is also continuous everywhere except $x=0$.

Use of Differentiation Rules

Assume $f(x)=\left\{\begin{array}{ll}x^{2} \sin \left(\frac{1}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ Show that for all $x \neq 0$ we have:

$$
f^{\prime}(x)=2 x \sin \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)
$$

and for $x=0$ we have

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0} \frac{x^{2} \sin \left(\frac{1}{x}\right)}{x}=0
$$

Hence f is differentiable for all $x \in \mathbb{R}$. We should note that the derivative function f^{\prime} is not continuous at $x=0$.

Use of Differentiation Rules

The function log : $(0, \infty) \rightarrow \mathbb{R}$ (Natural Logarithm) is the inverse function of $f(x)=e^{x}$. Since for all $x \in \mathbb{R},\left(e^{x}\right)^{\prime}=e^{x}$ and $e^{x}>0$, we can calculate the derivative of \log on its domain as:

$$
(\log x)^{\prime}=\frac{1}{\exp ^{\prime}(\log x)}=\frac{1}{\exp (\log x)}=\frac{1}{x}
$$

Similarly, we have $(\log |x|)^{\prime}=\frac{1}{x}$ for all $x \in \mathbb{R} \backslash\{0\}$.
One can also use this result and the chain rule to show that if $u: I \rightarrow \mathbb{R}$ is differentiable and u is not zero on I, then $\log (|u(x)|)$ is differentiable on I and:

$$
(\log |u(x)|)^{\prime}=\frac{u^{\prime}(x)}{u(x)}
$$

