Advanced Calculus
 Landau's Notations and Derivatives

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

Landau's Big O and Little o notation

Let f and g be two real valued functions defined on a neighborhood of a. We say that f is big O of g around a and show it by $f(x)=O(g(x))$ as $x \rightarrow a$ if there exist positive numbers δ and M such that for all defined x with $0<|x-a|, \delta$ we have $|f(x)|<M g(x)$.

We say that f is little o of g around a and show it by $f(x)=o(g(x))$ as $x \rightarrow a$ if $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=0$.
When we use the notation $o(g(x))$ without any reference to f, it means that we are talking about a function, which its limit when divided by g is equal to 0 .
With this notation, the $r(h)$ in the definition of derivative is little o of $h ; r(h)=o(h)$.

Examples of Landau's Notations

(1) Suppose $f(x)=\sin x$, we have $f(x)=O(1)$ as $x \rightarrow 0$ (This means \sin is bounded). Also $f(x)=o(1)$ as $x \rightarrow 0$ since $\lim _{x \rightarrow 0} \frac{\sin x}{1}=0$.
(2) Remember the Taylor expansion of e^{h} from session I. We can say that $e^{h}=1+h+o(h)$ as $h \rightarrow 0$. This means that e^{h} is equal to $1+h$ plus a function that when divided by h its limit is 0 . This can also be reformulated as:

$$
\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1
$$

(3) For \sin and cos, we can say that $\sin (h)=h+o(h)$ and $\cos (h)=1-\frac{h^{2}}{2}+o(h)$ as $h \rightarrow 0$. (Why?)

More Examples on Derivatives

(1) Suppose $f(x)=e^{x}$, we have:

$$
e^{(x+h)}=e^{x} \cdot e^{h}=e^{x} \cdot(1+h+o(h))=e^{x}+e^{x} \cdot h+e^{x} . o(h)
$$

as $h \rightarrow 0$. Take $r(h)=e^{x} . o(h)$, then

$$
\lim _{h \rightarrow 0}\left|\frac{r(h)}{h}\right|=\lim _{h \rightarrow 0} e^{x}\left|\frac{o(h)}{h}\right|=e^{x} .0=0
$$

So according to the definition:

$$
f^{\prime}(x)=\left(e^{x}\right)^{\prime}=e^{x}
$$

More Examples on Derivatives

(2) Suppose $f(x)=\sin x$, we have:

$$
\begin{aligned}
\sin (x+h) & =\sin x \cos h+\cos x \sin h \\
& =\sin x \cdot\left(1-\frac{h^{2}}{2}+o(h)\right)+\cos x \cdot(h+o(h)) \\
& =\sin x+(\cos x) \cdot h-\frac{h^{2}}{2} \sin x+o(h) \sin x+o(h) \cos x
\end{aligned}
$$

as $h \rightarrow 0$. Take $r(h)=-\frac{h^{2}}{2} \sin x+o(h) \sin x+o(h) \cos x$, then $\lim _{h \rightarrow 0}\left|\frac{r(h)}{h}\right|=0$. Thus according to the definition:

$$
f^{\prime}(x)=(\sin x)^{\prime}=\cos x
$$

More Examples on Derivatives

(3) Suppose $f(x)=\cos x$, we have: $\cos (x+h)=\cos x \cos h-\sin x \sin h$

$$
\begin{aligned}
& =\cos x \cdot\left(1-\frac{h^{2}}{2}+o(h)\right)-\sin x \cdot(h+o(h)) \\
& =\cos x+(-\sin x) \cdot h-\frac{h^{2}}{2} \cos x+o(h) \cos x-o(h) \sin x
\end{aligned}
$$

as $h \rightarrow 0$. Take $r(h)=-\frac{h^{2}}{2} \cos x+o(h) \cos x-o(h) \sin x$, then $\lim _{h \rightarrow 0}\left|\frac{r(h)}{h}\right|=0$. Hence according to the definition:

$$
f^{\prime}(x)=(\cos x)^{\prime}=-\sin x
$$

