Advanced Calculus Linear Algebra Basics

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

A Reminder from Linear Algebra

As we know, \mathbb{R}^n is a vector spaces over the field \mathbb{R} ; this means that we can define an addition operation + between the elements of \mathbb{R}^n (this is the component-wise addition of vectors) and a scalar product . between the vectors in \mathbb{R}^n and 'scalars' from \mathbb{R} . Also for each element/vector in \mathbb{R}^n we can assign *a real number* as its length called the norm:

First "inner product" (or scalar product) of ${\bf x}$ and ${\bf y} \in \mathbb{R}^n$ is defined by

$$\mathbf{x}.\mathbf{y} = \sum_{i=1}^{n} x_i y_i$$

Now norm of $\mathbf{x} \in \mathbb{R}^n$, as a real number, is defined as:

$$|\mathbf{x}| = (\mathbf{x}.\mathbf{x})^{\frac{1}{2}} = (\sum_{i=1}^{n} x_i^2)^{\frac{1}{2}}$$

Properties of Norm

If $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^n$ and $\alpha \in \mathbb{R}$ then:

- $|\mathbf{x}| \geq 0$
- $|\mathbf{x}| = 0$ iff $\mathbf{x} = 0$
- $|\alpha \mathbf{x}| = |\alpha||\mathbf{x}|$
- $|\mathbf{x}.\mathbf{y}| \le |\mathbf{x}||\mathbf{y}|$
- $|\mathbf{x} + \mathbf{y}| \le |\mathbf{x}| + |\mathbf{y}|$
- $|\mathbf{x} \mathbf{z}| \le |\mathbf{x} \mathbf{y}| + |\mathbf{y} \mathbf{z}|$

One should also note that, considering the properties of a norm given above, if we define $d(\mathbf{x}, \mathbf{y}) = |\mathbf{x} - \mathbf{y}|$, then we recover the Euclidean metric on \mathbb{R}^n .

Now consider two vector spaces \mathbb{R}^n and \mathbb{R}^m . We say a function $L : \mathbb{R}^n \to \mathbb{R}^m$ is linear, if it behaves well with the addition and scalar products; in other words if for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ and $c \in \mathbb{R}$:

$$L(\mathbf{x} + \mathbf{y}) = L(\mathbf{x}) + L(\mathbf{y})$$
 $L(c\mathbf{x}) = cL(\mathbf{x})$

We can also define the notion of norm for a linear transformation $L : \mathbb{R}^n \to \mathbb{R}^m$, shown by ||L||, as the supremum of of all numbers $|L\mathbf{x}|$, where \mathbf{x} ranges over all vectors in \mathbb{R}^n with $|\mathbf{x}| < 1$.

Every linear map $L : \mathbb{R}^n \to \mathbb{R}^m$ can be represented as a matrix multiplication. For instance $L : \mathbb{R}^3 \to \mathbb{R}^2$ with L(x, y, z) = (x + y, 2x - y + z) can be written as $\begin{bmatrix} 1 & 1 & 0 \\ 2 & -1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}.$

Hence for linear maps, instead of writing $L(\mathbf{x})$, we simply write $L\mathbf{x}$. Matrices on the hand are very well studied and are 'simple' objects compared to other general maps $f : \mathbb{R}^n \to \mathbb{R}^m$. Strangely, for such general maps, if we zoom enough, we see that locally they behave like linear function! For instance consider the graph of $y = x^2$: as we zoom in we see that it gets very similar to a line locally!