Advanced Calculus Linear Algebra Basics

ThinkBS: Basic Sciences in Engineering Education
Kadir Has University, Turkey

A Reminder from Linear Algebra

As we know, \mathbb{R}^{n} is a vector spaces over the field \mathbb{R}; this means that we can define an addition operation + between the elements of \mathbb{R}^{n} (this is the component-wise addition of vectors) and a scalar product . between the vectors in \mathbb{R}^{n} and 'scalars' from \mathbb{R}. Also for each element/vector in \mathbb{R}^{n} we can assign a real number as its length called the norm:

First "inner product" (or scalar product) of \mathbf{x} and $\mathbf{y} \in \mathbb{R}^{n}$ is defined by

$$
\mathbf{x . y}=\sum_{i=1}^{n} x_{i} y_{i}
$$

Now norm of $\mathbf{x} \in \mathbb{R}^{n}$, as a real number, is defined as:

$$
|\mathbf{x}|=(\mathbf{x} . \mathbf{x})^{\frac{1}{2}}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}
$$

Properties of Norm

If $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$ then:

- $|\mathbf{x}| \geq 0$
- $|\mathbf{x}|=0$ iff $\mathbf{x}=0$
- $|\alpha \mathbf{x}|=|\alpha||\mathbf{x}|$
- $|\mathbf{x} . \mathbf{y}| \leq|x||y|$
- $|x+\mathbf{y}| \leq|x|+|y|$
- $|\mathbf{x}-\mathbf{z}| \leq|\mathbf{x}-\mathbf{y}|+|\mathbf{y}-\mathbf{z}|$

One should also note that, considering the properties of a norm given above, if we define $d(\mathbf{x}, \mathbf{y})=|\mathbf{x}-\mathbf{y}|$, then we recover the Euclidean metric on \mathbb{R}^{n}.

A Reminder from Linear Algebra

Now consider two vector spaces \mathbb{R}^{n} and \mathbb{R}^{m}. We say a function $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear, if it behaves well with the addition and scalar products; in other words if for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$ and $c \in \mathbb{R}$:

$$
L(\mathbf{x}+\mathbf{y})=L(\mathbf{x})+L(\mathbf{y}) \quad L(c \mathbf{x})=c L(\mathbf{x})
$$

We can also define the notion of norm for a linear transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, shown by $\|L\|$, as the supremum of of all numbers $|L \mathbf{x}|$, where \mathbf{x} ranges over all vectors in \mathbb{R}^{n} with $|\mathbf{x}|<1$.

A Reminder from Linear Algebra

Every linear map $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be represented as a matrix multiplication. For instance $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ with $L(x, y, z)=(x+y, 2 x-y+z)$ can be written as $\left[\begin{array}{ccc}1 & 1 & 0 \\ 2 & -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$.
Hence for linear maps, instead of writing $L(\mathbf{x})$, we simply write $L \mathbf{x}$. Matrices on the hand are very well studied and are 'simple' objects compared to other general maps $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. Strangely, for such general maps, if we zoom enough, we see that locally they behave like linear function! For instance consider the graph of $y=x^{2}$: as we zoom in we see that it gets very similar to a line locally!

