Advanced Calculus Limit of Functions and Continuity

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

Limit of Functions

Assume that $f: (X, d_X) \to (Y, d_Y)$ is a function between two metric spaces which is defined in a deleted neighborhood $N_r^*(a)$ of $a \in X$.

We say that the limit of f(x) as x tends to a is equal to L iff for any $\varepsilon > 0$ there exist a $\delta_{\varepsilon} > 0$ such that for every x, if $0 < d_X(x, a) < \delta_{\varepsilon}$ then $d_Y(f(x), L) < \varepsilon$.

In this case we write $\lim_{x\to a} f(x) = L$.

The definition above is equivalent to saying that:

 $\lim_{x\to a} f(x) = L$ iff for any $\varepsilon > 0$ there exist a $\delta_{\varepsilon} > 0$ such that

$$N^*_{\delta_{\varepsilon}}(x)\subseteq f^{-1}(N_{\varepsilon}(L))$$

Continuity of Functions

Assume that $f: (X, d_X) \rightarrow (Y, d_Y)$ is a function between two metric spaces.

We say that f(x) is continuous at a iff for any $\varepsilon > 0$ there exist a $\delta_{\varepsilon} > 0$ such that for every x, if $d_X(x, a) < \delta_{\varepsilon}$ then $d_Y(f(x), f(a)) < \varepsilon$.

This is to say that f is defined in a and $\lim_{x\to a} f(x) = f(a)$.

The definition above is equivalent to saying that:

 $\lim_{x\to a} f(x) = f(a)$ iff for any $\varepsilon > 0$ there exist a $\delta_{\varepsilon} > 0$ such that

$$N_{\delta_{\varepsilon}}(a) \subseteq f^{-1}(N_{\varepsilon}(f(a)))$$

If a function f is continuous on all points of a set A, then we say that f is continuous on A.

Other Formulations for Continuity of Functions

- A function $f: (X, d_X) \to (Y, d_Y)$, is continuous at point $a \in X$ iff for any sequence $\{a_n\} \subseteq X$, if $a_n \to a$, then $f(a_n) \to f(a)$.
- A function f : (X, d_X) → (Y, d_Y) is continuous if for any open set O ⊆ Y, f⁻¹(O) is open in X.
- A function f : (X, d_X) → (Y, d_Y) is continuous if for any close set C ⊆ Y, f⁻¹(C) is close in X.

For further information, see 'Chap. 4: Continuous Functions'.

A function $f : (X, d_X) \to (Y, d_Y)$, is said to be uniformly continuous on a set $A \subseteq X$ iff for any $\varepsilon > 0$ there exist a $\delta_{\varepsilon} > 0$ such that for every $x, y \in X$ if $d_X(x, y) < \delta_{\varepsilon}$ then $d_Y(f(x), f(y)) < \varepsilon$.

Example: Any linear function $f : \mathbb{R} \to \mathbb{R}$ given by f(x) = ax + b for $a, b \in \mathbb{R}$ is uniformly continuous on \mathbb{R} .

Every uniformly continuous function is continuous, but the converse is not true. For instance $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^2$ is continuous on \mathbb{R} but is not uniformly continuous on \mathbb{R} . (why?)