# Advanced Calculus Limit of Functions and Continuity 

# ThinkBS: Basic Sciences in Engineering Education 

Kadir Has University, Turkey

## Limit of Functions

Assume that $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is a function between two metric spaces which is defined in a deleted neighborhood $N_{r}^{*}(a)$ of $a \in X$.

We say that the limit of $f(x)$ as $x$ tends to $a$ is equal to $L$ iff for any $\varepsilon>0$ there exist a $\delta_{\varepsilon}>0$ such that for every $x$, if $0<d_{X}(x, a)<\delta_{\varepsilon}$ then $d_{Y}(f(x), L)<\varepsilon$.
In this case we write $\lim _{x \rightarrow a} f(x)=L$.
The definition above is equivalent to saying that:
$\lim _{x \rightarrow a} f(x)=L$ iff for any $\varepsilon>0$ there exist a $\delta_{\varepsilon}>0$ such that

$$
N_{\delta_{\varepsilon}}^{*}(x) \subseteq f^{-1}\left(N_{\varepsilon}(L)\right)
$$

## Continuity of Functions

Assume that $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is a function between two metric spaces.

We say that $f(x)$ is continuous at a iff for any $\varepsilon>0$ there exist a $\delta_{\varepsilon}>0$ such that for every $x$, if $d_{X}(x, a)<\delta_{\varepsilon}$ then $d_{Y}(f(x), f(a))<\varepsilon$.
This is to say that $f$ is defined in $a$ and $\lim _{x \rightarrow a} f(x)=f(a)$.
The definition above is equivalent to saying that:
$\lim _{x \rightarrow a} f(x)=f(a)$ iff for any $\varepsilon>0$ there exist a $\delta_{\varepsilon}>0$ such that

$$
N_{\delta_{\varepsilon}}(a) \subseteq f^{-1}\left(N_{\varepsilon}(f(a))\right)
$$

If a function $f$ is continuous on all points of a set $A$, then we say that $f$ is continuous on $A$.

## Other Formulations for Continuity of Functions

- A function $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$, is continuous at point $a \in X$ iff for any sequence $\left\{a_{n}\right\} \subseteq X$, if $a_{n} \rightarrow a$, then $f\left(a_{n}\right) \rightarrow f(a)$.
- A function $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is continuous if for any open set $O \subseteq Y, f^{-1}(O)$ is open in $X$.
- A function $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$ is continuous if for any close set $C \subseteq Y, f^{-1}(C)$ is close in $X$.
For further information, see 'Chap. 4: Continuous Functions’.


## Uniform Continuity

A function $f:\left(X, d_{X}\right) \rightarrow\left(Y, d_{Y}\right)$, is said to be uniformly continuous on a set $A \subseteq X$ iff for any $\varepsilon>0$ there exist a $\delta_{\varepsilon}>0$ such that for every $x, y \in X$ if $d_{X}(x, y)<\delta_{\varepsilon}$ then $d_{Y}(f(x), f(y))<\varepsilon$.

Example: Any linear function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=a x+b$ for $a, b \in \mathbb{R}$ is uniformly continuous on $\mathbb{R}$.

Every uniformly continuous function is continuous, but the converse is not true. For instance $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(x)=x^{2}$ is continuous on $\mathbb{R}$ but is not uniformly continuous on $\mathbb{R}$. (why?)

