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1. Introduction to the course

1. Practical information:

e All the lectures will be held on Tuesdays, 15-17 (GMT+3).
e All the lectures will be recorded.

e All the necessary information and updates on the course (including the lecture notes and recorded videos) will
be posted on the virtual learning system of Kadir Has university (Hub).

2. Materials for further reading:

The present lecture notes together with the recorded videos of the lectures is sufficient for this course. However, if
you are interested to study dynamical systems further and in more details, there are so many books available that
you can use. Below are what we recommend.

e If you're not into reading a full textbook and prefer something short, we recommend
— S. Van Strien, Lecture notes on ODFEs. available for free on the author’s webpage.

e If you want to read a textbook and have some background in mathematics (e.g. mathematical analysis, linear
algebra and calculus), we recommend
— L. Perko, Differential equations and dynamical systems, third edition.
— M. W. Hirsch, S. Smale and R. L. Devaney, Differential equations, dynamical systems and an introduction to
chaos, third edition.

e If you want to read a textbook but you don’t feel comfortable reading math literature or you prefer a textbook
with more taste of applications, we recommend

— S. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering,
second edition.


https://hub.khas.edu.tr
https://www.ma.imperial.ac.uk/~svanstri/Files/de-4th.pdf
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e In the introductory session, we saw examples of synchronization in real world phenomena.

e A mathematical model for these phenomena is given by

dx i
dt

N
= fi(z)+a) AyH(z;—x;), Vie{l,... N}, (1.1)

j=1
where z; € R" (n > 1), A = (A;;) is the adjacency matrix of the network, and f;, H; € C* (R").

e Our main goal in this course is to develop methods that help us to understand the dynamics of this mathematical
model.
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2. Introduction to dynamical systems

2.1. Definition

e Dynamical systems studies the evolution of a system.

— A dynamical system is defined by a law of evolution which involves time and state (position). For a given
initial state, this evolution law describes how this state evolves as time passes.
— This rule can be deterministic or random.

— Time can vary continuously or discretely.

e In this course, we focus on deterministic! continuous(-time) systems.

Initial Evolution law Evolved
state > state

LA system is called deterministic if the entire past and future of a state are uniquely determined by its state at the present time. [Arn92]



SYNCHRONIZATION FROM A MATHEMATICAL POINT OF VIEW 6

e Rigorous formulation:
Definition 2.1. Consider R" (n > 1). Let t be real and x be a point in R". A dynamical system is a function

¢ R x R" — R"

(t.2) = o(t,) 2
that satisfies

(1) #(0,2) = x for all x € R™.
(11) ¢ (t2, ¢ (t1,2)) = @ (t1 + to, x) for all x € R™ and for arbitrary t1,t; € R.

These two conditions are known as flow properties.

e The variable t is called the time variable. The variable x is called the phase or state variable. We also call R” the
phase space.



SYNCHRONIZATION FROM A MATHEMATICAL POINT OF VIEW 7

2.2. Visualization of dynamical systems

Suppose a dynamical system ¢(¢,z) is given. A standard way to visualize this dynamical system is that for all
r € R", we draw the trajectory curve (path) that z takes as ¢t varies. We show the direction of increasing in time by an
arrow on this curve.

Ezample 2.2. One can show (see Exercise 2.4) that the function ¢ (t,z) = (e 'z1, €*x5), where x = (11, 32) € R? is
the phase variable, is a dynamical system. Consider an arbitrary point (c1,c2) € R%. Suppose (x1,x2) is a point on the
trajectory of (c1,c2). Thus, there exists t* € R such that

(21, 22) = (e "c1, e ) . (2.2)
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2
In Example 2.2, if ¢, co # 0, we have if—ll = ¢ and i—; = ¢?". Thus & = (;—11) . This implies that the curve paths

Ca
through (¢, ¢o), where ¢, co # 0, is given by
Tiry = Aoy, (2.3)

X2

X

Figure 1: This figure shows how points in R? move by ¢ (t,z) = (e_txl, €2t33‘2)
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2.3. An example of dynamical systems

Ezxample 2.3. Let a be a real number. Consider the function ¢ : R x R — R, defined by ¢(t,x) = e%x. We show that
¢ satisfies the flow properties.

(i) $(0,2) = ez = .

(ii) For arbitrary real t; and ty, we have ¢ (Lo, ¢ (t1,x)) = ¢ (ta, e™1x) = e x ey = etOHt)y = ¢ (t; 4 9, 7).

—— * - ® —

0 R 0 R
(a) Case a < 0. (b) Case a > 0.

Figure 2: Visualization of the dynamical system ¢(t,z) = e*x

FExercise 2.4. Determine whether or not the following functions ¢ satisfy the flow properties.
1. ¢ : R xR =R, defined by ¢(t,x) =t + x.
2.¢:R xR — R, defined by ¢(t,x) = t* + .
3. ¢:R xR =R, defined by ¢(t, x) = tx.

4. ¢: R xR? = R, defined by
o (t,x) = (eatxl, ebtxg) : (2.4)

where a and b are real constants, and x = (x1,15) € R? is the phase variable.
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2.4. Orbits

e Fix a point x( in the phase space R". The path that z takes as time ¢ varies is called the orbit or trajectory of xy.
More precisely, the orbit or trajectory of x( is the set

{o(t,xg) : teR} (2.5)
— Geometrically, an orbit is a curve in the phase space.

e The orbit of zj is defined for both positive and negative times t. However, for a given orbit, we can also focus only
on positive or negative times:

— The forward orbit or positive semi-orbit of a point zy € R" is the set

{6 (t,xg): t>0}. (2.6)
— The backward orbit or negative semi-orbit of a point xy € R" is the set
{6 (t,z9): t <0} (2.7)

ﬂo o T

(a) The backward orbit of z. (b) The orbit of . (¢) The forward orbit of .

Ezxample 2.5. For the dynamical system given in Ezample 2.3, there are three orbits: (i) {z : x > 0} (i) {0} (iii)
{z: x <0}.

Exercise 2.6. Consider the dynamical system given in Example 2.3 and let a = 0. How many orbits does this
dynamical system have?
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Remark 2.7. Orbits of a dynamical system never cross (here is why: assume the contrary. Thus, two different orbits
['y and Ty, where I'y # Ty, have a common point p. Then, I'y = {¢ (t,p) : t € R} =T'9, which is a contradiction).

e Some important examples of orbits:
(i) Equilibria:
— The orbit of a point z is said to be constant if it contains only the point x itself, i.e. the entire orbit is
just the single point {x}.
— We have ¢(t, xy) = xo for all ¢ € R. In other words, the point xy is steady; it does not move!

— When the orbit of z( is constant, we call the point zy an equilibrium point or steady state (also called fixed
point in some literatures).

(ii) Periodic orbits
— The orbit ¢(t, xg) of x¢ is said to be periodic if there exists T > 0 such that ¢(t,z¢) = ¢(t + T, ).
— The point xy comes back to itself after passing time T

e We call the set of all the orbits of a dynamical system the phase portrait of that dynamical system. However,

loosely speaking, by phase portrait we usually mean the visualization of that phase portrait, i.e. drawing figures
like Figures 1 and 27.
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2.5. Time-t maps

e Consider again the function
¢ R xR"— R",

(t,z) = o(t, z).
e We can think of two particular scenarios here:

1. We fix x and allow ¢ to vary.
2. We fix t and allow x to vary.

e Scenario 1:

— This is the scenario that we considered before.

— Let x = 9 € R". In this case,
¢ R — R",

t— qb(t, iU()).
— The function ¢ maps a real variable ¢ to a point in R”. In particular, it maps 0 to xg.

— ¢(t, zp), as t varies in R, describes the orbit of the point x.

/—\¢(t> )

t R R"

Figure 4: For a fixed x = x(, the function ¢ maps R to R".

12

(2.8)

(2.9)
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e Scenario 2:

— Let t =ty € R. In this case,

¢ R" — R",
x — o(ty, ).

13

(2.10)

— The function ¢ maps a point in R” to a point in R”. In particular, when ¢, = 0, the function ¢ maps each point

to itself, i.e. ¢ is the identity map.

— When the time variable t is fixed, the function ¢ is called time-t map. For example, x +— ¢(1,z) is called time-1

map.

— Time-t maps become important when we want to discretize a continuous-time system.

f\b(toa 2)

X

Figure 5: For a fixed t = ¢, the function ¢ maps R" to R".

R'I’L

R’I’L
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2.6. Invariance

Consider a dynamical system ¢ : R x R” — R" and let A # () be a subset of R".

e We say A is invariant with respect to ¢ if for every point z( in A, the entire orbit of x( lies in A, i.e. ¢(t,z) € A
for all t € R.

— The set A is invariant if and only if when we start from a point in A, moving forward and backward both, we
remain in A and never leave it.

Example 2.8. Let xo be an arbitrary point of the phase space. The orbit of xo is an invariant set.



SYNCHRONIZATION FROM A MATHEMATICAL POINT OF VIEW 15

e We say A is positively invariant or forward invariant with respect to ¢ if for every point xg in A, the forward orbit
of z¢ lies entirely in A, i.e. ¢(t,z9) € A for all t > 0.

— The set A is invariant if and only if when we start from a point in A and move forward, we remain in A and
never leave it.

e We say A is negatively invariant or backward invariant with respect to ¢ if for every point x4 in A, the backward
orbit of z( lies entirely in A, i.e. ¢(t,z9) € A for all t < 0.

— The set A is invariant if and only if when we start from a point in A and move backward, we remain in A and
never leave it.

Remark 2.9. Every invariant set is forward and backward invariant as well. However, not every forward or backward
nvariant set is necessarily invariant.

Ezercise 2.10. Determine whether or not the sets Ay = (=2, 1) and Ay = (2, 3) in R are (positively or negatively)
nvartant with respect to the dynamical system given by Example 2.5.



SYNCHRONIZATION FROM A MATHEMATICAL POINT OF VIEW 16

3. Introduction to ODEs

3.1. Vector fields

Consider a function f : R"™ — R". One can think of f as

x1 fl (xlvx%"'axn)
fl:]= : , (3.1)
), fn(x1, 29, ..., 2p)
where f; :R" >R (i=1,...,n).
X
R™ R"

Figure 6: The function f takes the point z € R" and maps it to f(z) € R".

FExample 3.1. The followings are examples of f : R" — R".

(i) f(w) = 2* 4+ 1. Here, f: R' — R (ii) f(53) = ("0 ). Here, f : R? — R2.

(iii) (%) = (gg;gigggf:g), where « is a real constant, and g, H : R> = R. Here, f : R?> — R2.

. Here, f : R? — R3.
+ Bh(x), where v € R", a and 3 are real constants and g, h : R" — R". Here, f: R" — R".
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e In this course, we call a function f : R" — R" a vector field. Here is why:

e One way to visualize a function f : R" — R" is that for every point © € R", we draw the vector f(x) starting at
the point « and ending at x + f(z) (see Figure 7).

Figure 7: For every point € R", we draw the vector f(z) starting at the point z and ending at x + f(x).
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Figure 8: The vector field f(x1,22) = (21,22 — 21).

18
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Figure 9: A portion of the vector field f (x1,z2) = (sinzo,sinz1) on R? (this figure is copied from Wikipedia).


https://en.wikipedia.org/wiki/Vector_field
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3.2. Solutions of ODEs

e Question: Suppose that f : R" — R" is given. Let xg € R". Does there exist any function

z:R—=R"

Fs 2 (t) = (@ (1) 12 (1)) (32)
such that “W — £ (z (¢)) and 2 (0) = x? If it exists, is it unique?
o By & — £ (a(t)), we mean -
0 @), 0 0) . (0),
0 o (1), 2 0), o (1), .
Gl g (1), 0), o 0.

x fi(@r,22,..,00)
where f < : ) = :
In fn(l‘hl‘g ..... J,‘n)

e Some terminologies and notations:

).

dx(t) _

— We call the equation =~

f(z(t)), i.e. equation (3.3), a system of ordinary differential equations.

— The condition x(0) = z; is called an initial condition.

— The equation “2% = £ (z(t)) together with the initial condition z(0) = zy is called an initial value problem

dt
(LV.P).

— Such a function z(t), if it exists, is called a solution of the initial value problem dfigt) = f(x(¢t)) and z(0) = xy.

dx(t)

— In this course, for simplicity, we use dot to show derivative with respect to time. For example, z := ==
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Example 3.2. The initial value problem
i = 35, and x(0) =0 (3.4)
has two different solutions z (t) = t3 and z (t) = 0.
Example 3.3. The initial value problem

Sbl = —4372,
3.5
o = T, and x(0) = (c1,¢2), (3.5)

where (cy1,cz) is an arbitrary point in R? has at least one solution (we will see later that this is the only solution) defined
fort € R, given by
x1 (t) = ¢1 cos 2t — 2¢9 sin 2t,

3.6
xo (t) = % sin 2t + ¢ cos 2t. (3.6)

Example 3.4. The initial value problem
&= a7 and x(0) =1 (3.7)

has the solutions x (t) = 1, which is defined for t € (—oo,1). Notice that x (t) = {5 satisfies & = 2? for t € (1,00),

however the initial condition is not satisfied since 0 ¢ (1, 00).
Ezxample 3.5. The initial value problem
T = f(x), and x(0) =0, (3.8)

where

flx) = (3.9)

has no solutions. Can you see why? Hint: if x(t) is a solution then it needs to be differentiable at every t, particularly
att = 0.

1 when x < 0
—1 when x>0
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e Remember the question that we asked earlier: Does the .V.P @ = f(z) and x(0) = z¢ have solution? Uniqueness?

— Quick Answer: As the examples that we just reviewed suggest:

In general, NO! For an arbitrary vector field f and arbitrary initial point zy € R", the solutions neither need
to exist nor be unique; even if they exist, they are not necessarily defined for all ¢ € R.

e Before we proceed to an elegant answer to our question, let’s see what the geometrical /physical meaning of a solution
is. Suppose that there is a unique solution z(t) for the LV.P & = f(z) and x(0) = xy.

— The solution x(t) describes how zy moves in R" as t varies.

— Define I'' := {z(t) : t € R}. Geometrically, I' is a curve in R". Let t* € R and z* := z(t*). The tangent vector

to the curve I' is given by 2 (¢*). However, 2 (¢*) = f (z (t*)) = f(2*). This means that at every point x on

the curve I, the vector f(x) is tangent to I

— Having in mind that z(¢) describes the movement of z, the vector f(z*) is the velocity vector at time ¢*.

™

Figure 10: At every point xg, the solution curve of & = f(z) passing through x, is tangent to the vector f(xg).
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THEOREM 3.6. Let f € CHR")?, and xy € R". Then, there erists a open interval I,, = (a (x0), B (z0)), where
a(zg) <0 < B(xg), such that the initial value problem

&= f(x)

3.10
z(0) =z (3.10)
has a unique solution x(t) on I,,. Moreover, the interval I, is maximal in the sense that if x*(t) is a solution of (3.10)
defined on an interval J, then J C I, and z*(t) = x(t) on J.

Proof. See [VS18], the proof of the existence-uniqueness theorem (Theorem 3.6) and the discussion on the maximal
solutions (Chapter 5). O

Remark 3.7. This theorem guarantees that if the vector field is C'-smooth, then the solution of the I.V.P exists and
1s defined on some maximal interval I C R. However, as Example 3.4 shows, this interval is not necessarily equal to R;

although this theorem guarantees the existence and uniqueness of the solution, it does not quarantee the solution to exist
for allt € R. In this course, we assume® that the solution x(t) of the LV.P (3.10) exists for allt € R, i.e. I,, = R.

Remark 3.8. In system (3.10), the function f does not depend directly on t. Such systems are called autonomous.
Nonautonomous systems are those where t is an independent variable of the function f; a monautonomous system 1is
written as & = f(t,x), where f : R x R" — R". Theorem 3.6 holds for nonautonomous case too (see [VS18], Theorem
3.6). In this course, our focus is on autonomous systems.

FEzercise 3.9. Can you say why Theorem 3.6 cannot guarantee the existence and uniqueness of solutions in Examples
3.2 and 3.5¢ What can this theorem say about Example 3.57

z1 fi(z1,22,0,%0)
2In general, we say f : R® — R™, given by f ( ) = ( : ), is Cl-smooth, denoted by f € C1(R",R™), if for all 1 <i < m and 1 < j < n, the partial
Tn fm(atl,z'rz.,...,xn)
derivative g%’_ (21, ,,) exists and is continuous. When n = m, we write f € C'(R"). The functions f in Example 3.1 are smooth (assuming g, h and H are smooth).
3This assumption is not that much strong. Indeed, for any arbitrary system @ = f(z), there exists a system of ODEs which is topologically equivalent to i = f(z)

and its solutions are defined on whole R (see [Per01], Section 3.1).
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In general, finding explicit solutions of ODEs is not possible. Even when the explicit solutions are available, they
can be very difficult to deal with. The aim of this course is not solving ODEs. In this course, we develop methods that
can be used to analyze ODEs without necessarily solving them.

3.3. Dynamical systems defined by ODEs

Theorem 3.6 states that when f € C!(R"), for any arbitrary xp € R", the LV.P & = f(z) and x(0) = z( has a
unique solution on I,,. Denote this solution by ¢; (zg).
Solving this [.V.P for every xy € R", we obtain a family of solutions ¢;(z¢). Define

O(t, x) == di(x). (3.11)
Then
THEOREM 3.10. The function ¢ : (t,x) — ¢ (t,x) defined by (3.11) satisfies the flow properties
(i) (0,z) =z for all x € R™.
(11) ¢ (ta, d (t1,2)) = ¢ (t1 + to, x) for all x € R™ and for arbitrary t1,ts € R.
Exercise 3.11. Prove Theorem 3.10.

Remark 3.12. Assuming I,, = R for every xo € R", Theorem 3.10 implies that the function ¢ : R x R" — R" given
by (5.11) is a dynamical system (see Definition 2.1). We call the function ¢(t,z) the flow* generated by the system

T = f(x).

Remark 3.13 (Smooth dependence on initial condition). When f is C'-smooth, the associated flow ¢ (t,x) is a C'-

smooth function of (t,x) (see e.q. [HSD12], Section 17.6). This means that not only we can think of a¢(gi,x)) but also we

can think of the expression %. Later, in this course, we will discuss this further.

4More precisely, flow is the family of all time-t maps defined on the phase space that satisfies the flow properties. This family with the composition operator is a
group. In this course, we treat the flow as the function ¢(¢,x) generated by a system of ODEs.



SYNCHRONIZATION FROM A MATHEMATICAL POINT OF VIEW 25
3.4. Equilibria of ODEs
The point 2y € R™ is an equilibrium for the Cl-smooth vector field f : R® — R™ if 2(t) = x, for all t € R, satisfies

i = f(x). (3.12)

PROPOSITION 3.14. The point xy € R" is an equilibrium for the Cl-smooth f : R™ — R™ if and only if f(xo) =0.

Proof. Suppose x(t) = x is an equilibrium. Then, z(t) = x, satisfies & = f(x). Thus, f(x¢) = f (z(t)) = =0.
Now, assume x( is a point such that f(xy) = 0. Observe that x(t) = x satisfies the .LV.P & = (:L‘) and :1:( ) = 1.
However, by Theorem 3.6, this is the solution of this I.V.P. [

Remark 3.15. Proposition 3.14 1is intuitively obvious: the only scenario in which the point xy does not move is that

the velocity vector at xq is zero, i.e. f(xg) = 0. On the other hand, if the velocity vector at the point is zero, this means
that the point does not mowve.

Ezample 3.16. Consider the system i = x> + 1, where x € R. The function f(x) = x* + 1 has no roots in R. Thus,

this system has no equilibrium points. Notice that x =1 and x = —1i, where 1 = \/—1, are not equilibria since our system
15 defined on R.
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Example 3.17. Consider the system
& =2ty
y=zz+y,

=222 1.

(3.13)

To find the equilibria of this system, we need to find all points (zg, o, 20) € R® such that 23+ y3 = 0, zo20 + yo = 0 and
2 —x3—1=0. From 23 + y2 = 0, we obtain that if (xo,yo, 20) is an equilibrium, then xo = yo = 0. Substituting this

into the equation 23 — x3 — 1 = 0, we obtain that either zg = —1 or zg = 1. However, both of these values of zy together

with xo = yo = 0 satisfies xozg + yo = 0. This means that system (3.13) has two equilibria (0,0, —1) and (0,0,1).

Remark 3.18. Suppose that xq is an equilibrium point of © = f(x). Sometimes it is more convenient if we shift the
equilibrium point to the origin. In this case, we can define the change of variable y = x — xy. Then, y = 1 = f(x) =

fly+ x0). Thus, if we define g(y) = f(y + o), then § = g(y) and g(0) = f(z¢) = 0.
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Example 3.19. Consider the system
jjl = 07
jj? = 07
where x1, 19 € R. Any arbitrary point on the plane is an equilibrium for this system.
FEzercise 3.20. Find all the equilibria of the system @ = f (x), where f is
(i) f: R — R given by f (z) = 2° — 52> + x.

(ii) f : R? — R? given by f (1) = (='~5e),

(iii) f: R — R given by f () = 2° — ax, where « is a real constant.

27

(3.14)
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PROPOSITION 3.21. Consider a smooth system & = f(x) defined on R"™ and let ¢(t, zo) be the orbit of a point xq € R".
Assume that the solution ¢(t,xq) of & = f(x) converges to a single point ast — co. More precisely, there exists p € R"
such that limy o ¢(t,z9) = p. Then, p is an equilibrium point.

Proof. By the assumption, we have lim;_,, ¢(¢, z9) = ¢(0,p) = p. Let 7 € R. Then, due to the the continuity of ¢ (note
that by Remark 3.13, ¢ is smooth and so continuous), we have

tlirg¢(73¢(t7x0)) - ¢(7-7 d)(oap)) : (315)
Taking the flow properties into account,
lim 6 (7 +,20) = 6 (7,p). (3.16)

However, lim; o ¢ (T + ¢, 20) = limy_,o0 ¢ (£, x9) = p. This implies that ¢(7,p) = p. But, 7 is arbitrary. This means that
p is an equilibrium. [
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3.5. One-dimensional ODEs
Let f: R — R be C!'-smooth and consider the system

i = f(x). (3.17)

The equilibria of this system are zeros (roots) of the function f. The function f can have different numbers of equilibria;
from zero (e.g. when f(z) > 0 for all ) to infinitely many equilibria (e.g. f(xz) = 0 for all ). Consider the case that
f has at least two equilibria. Namely, p; and po, i.e. f(p1) = f(p2) = 0, and p; < ps. Assume that f has no other
roots on the interval (py, p2). Therefore, either f(x) > 0 for all z € (p1,p2) or f(z) < 0 for all x € (p1,p2). Consider an

arbitrary point x in (p1,p2) and let z(t) be the solution of the .LV.P & = f(x) and z(0) = z. Thus, dfl(f) = f (z (1)).
This implies that z(t) is a strictly increasing function of ¢ if f > 0 on (p1,p2), and a strictly decreasing function of ¢ if
f < 0 on (pl,pQ).

Consider the case that z(t) is strictly increasing (the decreasing case is analogous). Note that x(t) < py for all t.
This is simply because that {x(¢) : t € R} and {p,} are distinct orbits and so they do not cross each other (see Remark
2.7). Therefore, x : t — x(t) is an increasing bounded real-valued function defined on R. Thus lim;,. x () exists.
However, it follows from Proposition 3.21 that this limit must be an equilibrium. Since, by assumption, there is no
equilibrium in the interval (pi, p2), we have lim;_,, x (t) = p2. The case that z(¢) is decreasing is similar; in this case,
we have lim;_, x (t) = p1.
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Figure 11: Dynamics of # = f(x), where f : R — R is C'-smooth.

PROPOSITION 3.22. Let p be an equilibrium point of system (3.17).

(i) If f'(p) < 0, there exists an open interval J containing p such that for any xo € J, we have lim; o x (t) = p,
where x (t) is the solution of (3.17) satisfying x (0) = x.

(1) If [ (p) > 0, there exists an open interval J containing p such that for any xo € J, we have limy_,_ x (t) = p,
where x (t) is the solution of (3.17) satisfying x (0) = x.

Proof. 1t is a simple consequence of the discussion above. ]
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3.6. Higher-order ODEs

In this course, we mainly study first-order ODEs; our systems involve with the first order derivative with respect to
t, not higher orders derivatives. For instance, the equation

d3x(t) d*z(t) ' dx(t)

13 t)—5 3z =0 3.18
20 130 ) 570 4 3 (3.18)
is a third-order ODE.
Consider the n-order differential equation of the form
A (x(”_l), 22 W, x) =0, (3.19)
where F' is some function and z*) = dl;f,gt). Define
dx(t d?z(t) d"tx(t)
n ZIJ( )7 Y2 dt y Y3 dt2 ) y Y dtnil ( )
Then,
Y1 = Y2,
Y2 = Y3,
(3.21)

yn =F (yn—l;yn—?; S 7y1) .
This trick allows us to reduce higher-order ODEs of the form (3.19) to first-order systems of the form (3.21).
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Ezample 3.23. Consider system (3.18), i.e.

3z (t) d*z(t) dx(t) 9
1 ~x(t) — t)” =0. 22
s T 3 e z(t)—5 o +3[z)] =0 (3.22)
Define
dx(t) d?z(t)
y1:=x(t), yo := s and y3 := proat (3.23)
Then, we can rewrite system (3.18) as
yl = Y2,
Y2 = U3, (3.24)

i3 = —13ysy1 + Bys — 3y7.
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4. Linear systems

In this section, we study the solutions of systems of the form & = f(x), where f : R" — R" is a linear function of x.
In other words, let A be an n x n real matrix, i.e. A € R™". We are interested in initial value problems of the form

T = Ax,

4.1
z(0) = xy, (4.1)
where xy € R".

Remark 4.1 (Equilibria of linear systems). It follows from Proposition 3.14 that x* is an equilibrium point of the
system & = Az if and only if Ax* =0, i.e. * € Null (A), where Null (A) is the null space of A. Thus,

e the origin 1s always an equilibrium point of the system © = Ax.

o the linear system © = Ax either has a unique equilibrium at the origin (this is the case that det (A) # 0) or has
uncountably many equilibria (this is the case that det (A) = 0, or equivalently, dim (Null (A)) > 1).
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4.1. Matrix exponentials: solutions of linear ODEs
e For any = € R, the series
2> 2 2t a9

OO.T
. S 4.2
kz::k +1 1 "2 T 0 T (42)

is well-defined, i.e. the series converges. We denote the value of this series by e*, i.e. e* = > ", % This allows us

to define the exponential function exp : R — R by exp (z) :=e* = Y7, ‘”’;{—T

e The constant e, called the Euler’s number, is an irrational real number which is approximately equal to 2.71828.
For instance, using a calculator, we can find that exp (3) = €3 & 20.0855, exp (—1) = ¢! ~ 0.3678, exp (4.017) =
et ~ 55.5342, exp (7) = €’ ~ 1096.6331, exp (0) = €” ~ 1 and exp (e) = e ~ 15.1542.

e The idea of the exponential of real numbers can be generalized to matrices too. Let A € R™", and consider

— T+ A+ SR 4.3
AT T T T T T (43)

o k A2 A3 A4 A5 A6
Z 0
k=

where [ is the identity matrix. Then

THEOREM 4.2. For any real n x n matriz A, series (4.3) is convergent, i.e. the matriz e? is well-defined.

Proof. See [VS18], Lemma 4.3. O

Definition 4.3. For any A € R™", we define exp (A) := et =372, fkl—f

SFor a given positive integer n, we define n! (read it n factorial) by n! :==1x2x 3 x --+ x (n — 1) X n. For example, 1! =1, 6! =1 x2x 3 x4 x5 x 6 = 720, and
10l=1x2x---x9x 10 = 3628800. We also have the agreement 0! = 1.
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6\2). Then

o (10 /X0 s (A0 s (X0 L (A0
A—(O 1)7 A_(O,u’ A® = 0 MZ? A’ = 0 :LLS’ A_ 0 /~L4

and stmilarly, for all integer k > 0, we have
A0
k _

EOO:A_’f (1 0>+<>\ 0>+1(A2 0>+1<A3 O)Jri()\‘l 0>+_._
K 0 w)  20\0 p2) " 30\0 ) 4\0 u
<1+A+%A2+§A3+--- 0 )
0 L+ p+ gp” + 0 + -
et 0
(5 &)

FExample 4.4. Let X\ and p be arbitrary real numbers and consider the matriz A = (

Therefore,

35

(4.4)

(4.5)

(4.6)
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THEOREM 4.5. Let A be an n X n real matrix and xy be an arbitrary point in R™. Then, the solution of the initial

value problem
T = Ax,

4.7
z(0) = xy, (47)
is given by z(t) = ez,
Remark 4.6. By definition, we have
= ARtk t2A2 AP AT A
At _ _ e
M=) e A o o (4.8)

k=0

Proof. Observe that "4 = I (see Corollary 4.13). Thus, 2(0) = ¢’z = Izy = x5, and so the initial condition is
satisfied. We now need to show that z(t) = e4z, satisfies # = Az. We have

detA pltHmA _ gtd . ptAGhA _ A ohA _

— 1 an commute I; _ tA 1; 4

dt ho h B h 0 h (49)
On the other hand, e — I = % + h22‘!42 + hi";‘g + ---. This gives
e — 1 hA?  hA? hF—t A

li = lim lim A e = A. 4.1
T e R T 10
Thus, by (4.9), we have % = Ae'| as desired. []

Remark 4.7. Following Theorem 4.2, the solution x(t) = ez is defined for all t € R.
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Example 4.8. Let A and p be arbitrary real numbers and consider the 1.V.P

= A, (4.11)
Ty = U2, and  (21(0),22(0)) = (210, T20) , .
where (x19, T9) is an arbitrary point in R?. We can write (4.11) in the form
=A
L= A (4.12)

where A= () and v = (z1,x2). According to Theorem 4.2, the solution of I.V.P (4.12) is given by z(t) = e (110).

However, it follows from Example 4.4 that et = (egt e(r)“f)' Thus,

N (t) _ At [(T10) _ e)\t 0 1o\ e)‘t:cm
z(t) = <$2 (0) — ¢ <5620) B (0 e ) \wy)  \eMayn)’ (4.13)
FEzercise 4.9. Solve the initial value problem & = ax and x(0) = xzy, where a is a real constant, x € R and xy is an
arbitrary point in R. Compare your findings with Example 2.3.
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4.2. Matrix exponentials: properties and examples

PROPOSITION 4.10. Let A and B be real n X n matrices. Then
(i) if AB = BA, then e*B = Be”.
(ii) if AB = BA, then e*8 = e4eB,
(iii) (e4) ™" = e 4.

Ezercise 4.11. Prove Proposition 4.10.

A
FExample 4.12. Consider a diagonal n X n real matriz A = ( & ,

as in Fxample 4.4 gives

eAl

€

An

.)\n

), where A1, ..., A\, € R. Similar conclusion

(4.14)

COROLLARY 4.13. If follows from Ezample 4.12 (take \; = --- = X\, = 0) that if A is the zero matriz, then et =1,

where I is the identity matrix.
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Ezxample 4.14. Let X\ and ~y be real numbers and consider

_ (A
A= (0 )\) : (4.15)
In this example, we show that
1
et = ¢ <0 D . (4.16)
Write A = X + M, where I is the identity matriz and M = (8 g) The matrices M and A\ commute (we say two
matrices P and QQ commute if PQ = QP). By Proposition 4.10, we have e = eM+M = MM,
In Example 4.4, we have shown that
et 0
M = (0 BYE (4.17)
On the other hand, we have M? = 0, and therefore M* =0 for all integer k > 0. This yields
M _ M _ gl
e _kzok!_]+M—<O 1). (4.18)

We have

A
A_ v _ (e 0N (1 vy yfl~
et =¢ete _(O eA> (O 1)—6 <O 1>. (4.19)
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Example 4.15. Let a and b be real numbers and consider
a —b
A= (2 )

We show that
A (cos b —sin b)
et =e ) )
sinb cosb

Let X\ = a + bi, where i = \/—1. Thus
1= ()= () W),

Note that, \> = (a + bi)* = a® — b> + 2abi. Therefore

()6 ) = ) = () wey))

40

(4.20)

(4.21)

(4.22)

(4.23)
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Inductively, for any integer k > 0, we can show that
k
r_ [(a =b\ _ [Re(N) —Im (\")
AT = (5 a) = <Im (W) Re (M) ) (4.24)

fﬁA—k:i Re(3) —tm(3))  (ZoRe(¥) - mm (%)
| Tm (2 Re<H) > A ZZiORe(%T)

k=0 k=0 \ 1 H ko 1 { 77

k
—Im e 4 fcosb —sinb
— ¢ \sinb cosb )°

Note that, in the last equality, we used the Euler’s formula: for any real number x, we have e = cosx + isinx. Thus,
for A = a + ib, we get e* = e%’ = ¢ (cosb + isinb).

We have

(4.25)
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4.3. Matrix exponentials: the key idea of calculation

A natural question that may arise here is that how we can calculate e? for an arbitrary matrix A. The key idea is
as follows. Let P be an invertible matrix, and consider B := P~'AP. Then, for any integer k > 0, we have

k times
A\

~

B* = (P'AP)" = (P7'AP) ... (P"'AP) = P'APP AP P TAP ... P"TAP = P71 AFP (4.26)

which implies A¥ = PB*P~!. Thus,

T AP L pBEpl >, B
A - _ -1 B p—1
e _E:—k!_Ej—k! - (Ej—k!)P — PeBpi, (4.27)

What relation (4.27) suggests is that if, for a given A, we can find B such that B = P7'AP, for some invertible
matrix P, and computing e? be easy, then we can find e using relation (4.27), i.e. e = PePP~!. For example, if A is
diagonalizable, we can choose B to be a diagonal matrix and then use Example 4.12.

Remark 4.16. Most of the matrices are diagonalizable. For non-diagonalizable matrices, the matrix B can be chosen
to be the Jordan form of A. In this course, we deal with non-diagonalizable case for 2 x 2 matrices and refer the reader
to [VS18] for higher dimensional case.
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4.4. Planar linear systems

In this section, we study the dynamics of
T = Ax, (4.28)

where A is a 2 X 2 real matrix. Our approach is based on the following lemma

LEMMA 4.17. For a given A € R?*2, there exists an invertible P € R**? such that B = P 'AP has one of the

following forms
A0 Al a —b
(0. (1)) e so(2) o

where X\, i, a and b # 0 are real.

Proof. This lemma is the Jordan form theorem for the particular case of 2-dimensional matrices. See [Per(1], Jordan
canonical form theorem (Section 1.8). O

Let B and P be as in Lemma 4.17, and define the change of variables y = P~'x. Thus, y € R? and 2 = Py. Then
=P 'i =P 1Az = P 'APy = By. (4.30)

This relation together with Lemma 4.17 suggests that by a linear change of variables, any given linear planar system
& = Ax can be reduced to a system y = By, where B is one of the three matrices given by Lemma 4.17.
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4.4.1 Case l: B = (6\2)

In this section, we study the system § = By, where B = () and y = (y1,42) € R% Consider an initial point
(Y10, y20) € R2. The solution of §j = By passing through this initial point at ¢ = 0 is

v (t) Bt [ Y10 eM 0\ (v My
= = = . 4.31
<yz (t)> ‘ (y20> ( 0 ") \ya ey (431)
Assume A, y19 and yo9 are non-zero. Then,

M

u b _p _u u
Yo (t) = e"yag = (eM)  y20 = (eMy10)* Y10™¥20 = Y16*v20 [1 (1)]* . (4.32)

This means that for the case that A, 19 and y99 are non-zero, the orbit of (y19, y20) lies in the set

{(y1,92) © v2 = v10"y20ur }- (4.33)

When A # 0 but yi9 = 0, it follows from (4.31) that y;(¢) = 0 for all ¢ € R. This implies that the orbit of (0, ys) is
the positive side of ys-axis if yo9 > 0, the negative side of yy-axis if y99 < 0, and the origin if yo9 = 0. Similarly, when
A # 0 but yo9 = 0, it follows from (4.31) that yo(t) = 0 for all £ € R. Thus, the orbit of (y19,0) is the positive side of
yr-axis if y;9 > 0, and the negative side of y;-axis if ;9 < 0. This analysis also implies that the vertical and horizontal
axes are invariant with respect to the dynamics.
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In order to figure out the phase portrait of the system y = By, where B = (é 2), we consider the following scenarios:
) A<O0<porpu<0<A

(i) A=pu>00r A=p<0.

)
)
(iii)) u>A>00r p<A<O.
(iv) A>pu>00r A< pu<0.
)

(v) A=0or u=0.
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e Scenario (i): A<O0<por u<0<A

In this scenario, £ < 0. Define 8 = §. According to (4.33), we need to plot the curves of the form y, = constant - ylﬁ :

where 8 < 0. Taking into account that the horizontal and vertical axes are invariant, we can plot the phase portrait of
the system for this scenario (see Figure 12).

e In this scenario, two orbits approach the origin as ¢t — oo and two other orbits approach the origin as t - —oo.

e The equilibrium point at the origin in such scenarios is called a saddle point.

L,
-

a) A <0< p. b) <0< A

Figure 12: Phase portrait of scenario (i).
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e Scenario (ii): A\=pg>0o0r A=y <0.

In this scenario, § = 1. According to (4.33), we need to plot the straight lines y, = constant-y;. Taking into account

that the horizontal and vertical axes are invariant, we can plot the phase portrait of the system for this scenario (see
Figure 13).

Y2 Y2
Y A
Y A
Y Y1
i !
A
(a) A\=pu<0. (b) A =p>0.

Figure 13: Phase portrait of scenario (ii).



SYNCHRONIZATION FROM A MATHEMATICAL POINT OF VIEW 48

e Scenario (iii): p>A>0or u< A <D0.

In this scenario, £ > 1. Define 8 = §. According to (4.33), we need to plot the curves of the form y, = constant - ylﬁ :

where 8 > 1. Taking into account that the horizontal and vertical axes are invariant, we can plot the phase portrait of
the system for this scenario (see Figure 14).

Yo

(a) Case u < A < 0. (b) Case > A > 0.

Figure 14: Phase portrait of scenario (iii).
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49
e Scenario (iv): A\>pu>0o0r A< pu<0.

In this scenario, 0 < £ < 1. Define g = &

¢ According to (4.33), we need to plot the curves of the form y,

constant - ylﬁ , where 0 < 3 < 1. Taking into account that the horizontal and vertical axes are invariant, we can plot the
phase portrait of the system for this scenario (see Figure 15).

Yo Y2

o0
Y1 "
N

i)

(a) Case A < u < 0.

(b) Case A > p > 0.
Figure 15: Phase portrait of scenario (iv).
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e Scenario (v): A=0or u=0.

Assume A = 0 and p # 0. Recall from (4.31) that

y1 (1) My
— , 4.34
(92 (t)> <€” “120 (434)
Suppose A = 0 and observe that any point on the y;-axis is an equilibrium. Moreover, by (4.34), we have (y; (t),y2 (t)) =
(y10, €y20). This suggests that when A\ = 0, the orbit of (y10,y20) is the positive side of the vertical line y; = yyq if
yo0 > 0, the negative side of the vertical line y; = yyo if y20 < 0, and the point (yi9,0) if yo9 = 0. By this analysis, we

have the phase portrait for the case A = 0 and p # 0 as in Figure 16. By an analogous analysis, we obtain the phase
portrait of the case A # 0 and g = 0 as in Figure 17.
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Y2

»

AAAAAAAAA

»

AAAAAAAAA

n

(a) Case A =0 and p < 0.

<<

FYYYYYYYYY

<

FYYYYYYYYY

Figure 16: Phase portrait of scenario (v).

(b) Case A =0 and p > 0.

Y2
—_—— @« ————«———
—_— ¢ € —<——
—_— ¢ €« <———
> > < <

AAAAAAAAAAA
AAAAAAAAAAA

YYYYYYYYYYY
YYYYYYYYYYY

|

|

/

YYYYYY

AAAAAAAAAAA
AAAAAAAAAAA

YYYYYYYYYYY
YYYYYYYYYYY

>

(a) Case p =0 and A < 0.

Figure 17: Phase portrait of scenario (v).

(b) Case p =0 and A > 0.
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4.4.2 Casell: B=(}})

In this section, we study the system ¢y = By, where B = () 1) and y = (y1,y2) € R? Consider an initial point
(Y10, y20) € R?. The solution of j = By passing through this initial point at ¢ = 0 is

yi (€)Y _ s (Y10 _ e teM\ (yi0) _ (e Myio + Mty (4.35)
Y2 (1) Y20 0 M)\ eMiyag ' '
In order to figure out the phase portrait of the system y = By, where B = (3 ,i>7 we consider the following scenarios:
(i) A # 0.
(ii)) A = 0.

e Scenario (i): A # 0.

Assume \ and y99 are non-zero. From the equation ys(t) = ey, we obtain

1 Yo (t)
t=—1In ) 4.36
A Y20 ( )

On the other hand, Z;Eg = % + t. Thus, by (4.36), we have

yi(t) o 1. ya(t) [ylo 1 ] 1
=ty = e = s nys | + Ty (1), 4.37
va(t) w20 A Y Yoo A Y201 T y2 (1) (4.37)
which gives
yio 1, wya(t) yio 1 1
t) = Z— 4+ —1 = [Z—= — —1] t — t)1 t). 4.38
1 (t) - o ”~ [y20 Y Y20 yz()+)\y2()ny2() ( )

Thus, to plot the phase portrait of this scenario, we need to consider the curves of the form y; = ays + %yg In 5, where
« is some constant. This is also easily seen that the horizontal axis y» = 0 is invariant, and these curves are tangent to
the horizontal axis at the origin. This analysis gives Figure 18.
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Remark 4.18. Note that the yi-axis 1s invariant while the ys-axis 1s not.

Yo

\yg T
— R

T
- 5 -
U1 « 4 > U1

\F—
(a) Case A\ < 0. (b) Case A > 0.
Figure 18: Scenario (i): A # 0

o3
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e Scenario (ii): A =0.

By (4.35), when A = 0, we have
Y1 (t) Y10 + ty20
— ) 4.39
(y2 (75)> < Y20 ) ( )

This implies that the horizontal lines y» = constant are invariant. the phase portrait for this scenario is given in Figure
19.

—o 0000000000000 000000000 U]

Figure 19: Phase portrait of scenario (ii): A = 0.
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4.4.3 CaseIIL: B= (¢ ")

In this section, we study the system y = By, where B = (¢ *) and y = (y1,72) € R% Consider an initial point
(Y10, y20) € R2. The solution of §j = By passing through this initial point at ¢ = 0 is

() = (e am) (). »
In order to figure out the phase portrait of the system B = (ch ’ab ), we consider the following scenarios:
(i) a = 0.
(i) a # 0.

Note that when b = 0, we have B = (¢ Y) which is the case that was studied earlier (see Figure 13).
Before we proceed to study the above scenarios, let us first see what the geometrical meaning of relation (4.40) is.

Let 6 € R, and consider the matrix
cosf —sind
Fy = (sin@ cos 6 ) ' (4.41)

e The matrix Ry is called a rotation matrix. This matrix rotates the points in the plane about the origin by the angle
6 (see e.g. [Mey00]). The rotation is counter-clockwise when 6 > 0, and clockwise when 6 < 0.

o In (4.40), the matrix (P! - sinb) rotates (§15) by the angle bt. Thus, as ¢ increases, this rotation is counter-
clockwise if b > 0, and clockwise if b < 0. Then, after this rotation, the coefficient e in (4.40) controls the size of

(‘Z;Ei; ) In other words, b controls the angle (rotation) and a controls the size of (zggg )
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Figure 20: Ry rotates the points in the plane by the angle 6 about the origin.
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Figure 21: Scenario (i): a = 0.
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Y2 Y2
(a) b <0. (b) b > 0.

Figure 22: Scenario (ii): a > 0
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b<0. (b) b> 0.

Figure 23: Scenario (ii): a < 0
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4.5. Stability of equilibria in linear systems

4.5.1 Preliminaries from Linear Algebra

o8

In this section, we briefly review some concepts from Linear Algebra. For a more detailed review on this topic, we

recommed [HSD12] (Sections 2.3 and 5.1).
Vector norms

)
Let x = ( : ) be a vector in R". In this course, we define the norm of z, denoted by ||z, by

Ln

lall = /a2 + a3+ +a2.

This norm is called the standard norm of the Euclidean space R".

Remark 4.19. Norm is a function which assigns a non-negative real number to every vector of R".

Ezample 4.20. (i) Consider v = (-3,0,3,2) € RY. Then

|\v||:\/(—3)2+02+32+22:\/9+0+9+4:\/@.

(i1) Let O be the origin of R". Then, ||O]| = 0.
(1ii) let —1 = (—1) € R. Then ||(=1)]| = 1.
FEzercise 4.21. Prove that the norm defined by (4.42) satisfies the following properties.

(i) Let O be the origin of R", and x € R" be an arbitrary vector. Then, ||z|| =0 if and only if z = O.

(i1) Let r be an arbitrary real number, and v be an arbitrary vector in R™. Then, ||rv|| = |r|||v]|.

(111) (Triangular inequality) Let x,y € R™. Then, ||z + y|| < [|z|| + ||yl-

(4.42)

(4.43)
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Linear independence

Definition 4.22. Consider m vectors vy, vs, ...,y n R™. A linear combination of these m vectors is any vector of
the form
T1U1 + TU2 + =« =+ Ty Uy, (4.44)
where r; are arbitrary real numbers.
Definition 4.23. Consider the vectors vi,ve, ..., Uy, where m > 2, in R". We say that these m vectors are linearly
independent if and only if none of these vectors can be written as a linear combination of the other m — 1 vectors. An
equivalent version of this definition s as follows: if rivi+rovo+- - -+rpv, = 0, for some real r;, thenry =--- =r, = 0.

Ezample 4.24. The vectors (') and (3) are linearly independent. Here is why: let 1,79 € R. Then,

- (—11> . (g) _ (8) — (27”27; “) - (8) — = 0=y =0. (4.45)

Example 4.25. The vectors ( 3)), (3) and (:g) are not linearly independent. Here is why: let 11 = —2, ro = 4 and

ry = 2. Then,
9 (_31> 44 (3) 49 (:g) — (8) | (4.46)
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Generated vector subspaces

Suppose that a family of vectors {v,} in R" is given. Then, the set
V ={rivy +rova+ -+ rpu, - m > 1is an arbitrary integer, r; are arbitrary real numbers, and v; € {v,}}
is a vector subspace of R".

Definition 4.26. The set 'V is called the vector (sub)space generated by {v,}. We denote it by ({va}).

60

(4.47)
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Let Vi, V5, ..., and V}. be subspaces of R"”. Assume that the intersection of any two of these subspaces is only the
origin of R", i.e. V;NV; = {0}, for all 1 <14, j < k. We write

Rn:vl@...@vk (4-48)
if R” can be generated by Vi, Vo, ..., Vi, i.e. R" = (Vq,..., V).

Remark 4.27. Assume R" =V, @ --- @ Vi. Then, for any arbitrary v € R", there exists a unique vector v; € V;,
for every v = 1,...,k, such that v = vy + vy + -+ + vi.. In other words, an arbitrary vector v € R" can be uniquely
decomposed to components in each of the subspaces V;.
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Eigenvalues, eigenvectors and (generalized) eigenspaces

Definition 4.28. For a given n X n matriz A, define p(x) := det (A — xI). The expression p(x) is a polynomial of
degree n and is called the characteristic polynomial of A.

Ezample 4.29. Consider the matriz Q = (' 3). The characteristic polynomial of Q is

4

p(x) = det (Q — 1) = det (‘15‘”5 2_x> (cl—2)x (2—2)—dx5—a®—x—22. (4.49)

FEzxample 4.30. Consider the matrix () = (Z _ab), where a and b are real numbers. The characteristic polynomial of

Q is
—b
a—x

p(r) = det (Q — zI) = det (a;x > — (a—x)° +b* = 2% — 20z + d® + V2. (4.50)
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Definition 4.31. The roots of the characteristic polynomial of the matrix A are called the eigenvalues of A.

Remark 4.32. Considering the multiple (repeated) roots of p(A), the n x n matriz A has ezactly n eigenvalues. The
number of times that the eigenvalue \ appears as the root of the characteristic polynomial p(x) is called the algebraic
multiplicity of . An eigenvalue X is said to be simple if its algebraic multiplicity is 1.

Fzample 4.33. The matriz given in Example 4.29 has two eigenvalues given by Ao = % (1 + v 89).
Ezample 4.34. The matriz given in Example 4.30 has two eigenvalues given by A2 = a £ bi, where 1 = y/—1.

Remark 4.35. As Example 4.30 suggests, the eigenvalues of a real matrixz A can be non-real too. In this case, non-real
eigenvalues appear as pairs. More precisely, if X = a +bi (i = /—1) is an eigenvalue of A then the complex conjugate
of \, i.e. A =a — bi, is an eigenvalue of A too.

FEzample 4.36. It is easily seen that the eigenvalues of diagonal matrices (or more generally, upper or lower triangular
matrices) are exactly the elements on the diagonal. For example, each of the matrices

_7 7 =221 0 -1 0
/ 5 0 \ (0 5 4 —4 1 o\
0 0 0 0 11 v6 8
—7 ’ 0o 0 0 -7 2 1 (4.51)
0 0 0 0 0 0 0 323
\ —7) \0 0 0 0 0 —T)

has sixz eigenvalues: eigenvalue —7 with algebraic multiplicity 3, eigenvalue 0 with algebraic multiplicity 2, and a simple
eigenvalue 5.
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Suppose that A is an eigenvalue of A. Thus, det (A — AI) = 0. Equivalently, A — Al is a singular (noninvertible)
matrix. Therefore, Null (A — AJ) is non-trivial (i.e. its dimension is at least 1), where Null (A — AI) is the null space of
A— M. Assume ) is real. Thus, there exists 0 # v € R” such that (A — A\ )v = 0. Equivalently, Av = Av. Analogously,
for the case that X is non-real, such a vector 0 # v € C" that satisfies Av = Av can be found.

Definition 4.37. Let X be an eigenvalue of A. Any vector v # 0 that satisfies Av = v s called an eigenvector of A
associated with .

Example 4.38. Consider the matriz A = (2 1). The characteristic polynomial of A is

2—x 1

p(x):det(A—:U]):det< 19—

) = 2% — 42 + 3. (4.52)

The eigenvalues of A are the roots of p(x) = x* — 4z + 3 which are A =3 and A = 1. For \ = 3, any vector of the form

v = (1), where r € R is an eigenvector. For instance v = (1). For A = 1, any vector of the form v = (), where

r € R is an eigenvector. For instance v = ( Y).
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PROPOSITION 4.39. Consider a real n X n matrix A and suppose that \ is an eigenvalue of it with a corresponding
eigenvector v. Then, € is an eigenvalue of e and v is an eigenvector of e? associated with the eigenvalue €.

Proof. Since v is an eigenvector associated to A, we have

Ay _ (1 A A2 A3 At B Av  A%v A% Ah 453
eV = +ﬁ+§+§+ﬂ+”' V=70 + 1!+ 9] +3! —|—4! + ( )
Notice that, for a positive integer k£, we have
Afp = AR Ay = ANAF Ty = MAM2 A0 = N2AF 20 = - = WAy = M, (4.54)
Thus, by (4.53), we have
A Av  A%v A%y Al
ev—v+1!+2!+3!—|—4!+
+)\U+)\2U+)\3U+>\4U+
o U —_— o o e
1! 2! 3! 4! (4.55)
_ (4 DD D SR &
== +ﬂ+§+§+z+“' v
= M.
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Generalized eigenvectors and eigenspaces

Having Av = \v is equivalent to (A — AI)v = 0. The set of all such vectors v is called the eigenspace associated
with the eigenvalue A\. We can generalize this concept as follows:

Definition 4.40. Let A be an eigenvalue of A. A wvector v is said to be a generalized eigenvector if there exists an
integer k > 1 such that (A — )\])k v = 0. The set of all such vectors is a vector subspace of R" and called the generalized
ergenspace assoctated with the eigenvalue .

Ezample 4.41. Consider the matrizc A = (1), where A € R. This matriz has the eigenvalue X with multiplicity 2.

To find the associated eigenvectors v = (), we have
o 01 U1\ 0 U2\ 0 .
oo () ()= () = (5) = (0) = =0 s
This suggests that v = (}) is an eigenvector associated with \. Moreover, we cannot find any other independent eigen-

vector for A. Let us know try to find generalized eigenvectors. To this end, we need to solve the equation (A — )\])2 v=20
for v € R%. We have

A— M = <8 (1)) — (A= \)* = (8 8> . (4.57)

Since (A — XI)* = 0, any arbitrary vector v satisfies (A — X )*v = 0. Thus, any arbitrary v # 0 can be considered as a
generalized eigenvector. If we look for vectors independent of from the eigenvector (}) founded earlier, we can consider,
for instance v = ().
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4.5.2 Examples of invariant sets for linear flows
LEMMA 4.42. Let A be a real n x n matriz and V. C R" be a subspace such that AV C V. Then, eAV C V.

Proof. Let x € V. Then
Ax  A’x A’z Az
A e
er=x+ T + o + i + 1 + (4.58)
Define M}, := = + % + AQ—? + -+ Ak—’?. Thus, etz = limy_..c M. However, since for each positive integer j, we have
Az € V, we have M;, € V for all k. However, since e4x is well-defined, i.e. limj .. M} exists, and V is closed®, we
have that etz € V. Thus, eV C V. ]

The following proposition is an easy consequence of Lemma 4.42.

PROPOSITION 4.43. Consider a system
T = Az, (4.59)
where A is an n X n real matrixz. Let V' C R" be a subspace such that AV C V. If xy be an arbitrary point in V', we
have exy CV for allt € R. In other words, V is invariant with respect to the flow of system (4.59).

FExample 4.44. Consider system (4.59) and suppose X\ is an eigenvalue of A. Let E\ be the generalized eigenspace
associated with \. It can be shown that AE) C E\ (see [Per01], Section 1.9). Then, it follows from Proposition 4.43
that Ey is invariant with respect to the flow of (4.59), i.e. eM'E\ C E\ for allt € R.

6Here, closedness is a topological property. A set X in R™ is said to be closed in R", or simply closed, if for any sequence {z} such that z; € X for all k, and {z}}
is convergent to some point z* € R™, we have z* € X. For example, the interval (0,1] is not closed in R because the sequence {%} is in (0, 1], however, this sequence is
convergent to 0 € R but 0 ¢ (0, 1].
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4.5.3 Stable, unstable and center subspaces

Consider a system
T = Ax, (4.60)

where A is an n x n real matrix. The matrix A has n eigenvalues. Consider the real parts’ of these eigenvalues. Some

of these real parts are positive, some are negative and some equal to zero. Consider all the generalized eigenvectors of
these eigenvalues®.

Definition 4.45. We define

(i) E% = <{v . the vector v is a generalized eigenvector of some eigenvalue X, where Re (\) < O}>
(i1) B¢ = <{v . the vector v is a generalized eigenvector of some eigenvalue A, where Re (\) = O}>

(iii) B = <{v . the vector v is a generalized eigenvector of some eigenvalue A, where Re (A) > O}>

We call E*, E¢ and E", the stable, center and unstable subspaces of system (4.60), respectively.

"Let A = a + bi, where a,b € R and i = v/—1, be a complex number. By the real part and imaginary part of A\, we mean the real numbers a and b, respectively. We
write Re (A) = a and Im (\) = b. For example, Re (3 — 5i) = 3, Im (3 — 5i) = —5, Re (49) = 0, Im (44) = 4, Re (10) = 10 and Im (10) =0

81f the eigenvalue )\ is non-real, its generalized eigenvector can be written as v = u + 3w, where u,w € R™ and i = v/—1. In such scenario, instead of v = u+ 4w € C",
we consider the vectors v and w individually, and the vector subspace spanned by these two vectors.
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Example 4.46. 9 Consider system (4.60), where A is given by

-2 —-10
A=11 =20
0 0 3
The matriz A has the eigenvalues \; 2 = —2 £ 1 and A3 = 3. This matriz has the eigenvectors
0 1
11+£210
0 0
corresponding to A1 2, and
0
0
1

corresponding to \3. Then

ES

I
/\
—_
O O =
\/

and
0
E :< (1) >

Thus, the stable subspace E* is the (x1,x2)-plane, and the unstable subspace E" is the x3 axis (see Figure 24).

9This example together with its figure is taken from [Per(1]

69

(4.61)

(4.62)

(4.63)

(4.64)

(4.65)
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&

Figure 24: The stable subspace E?® is the (x1, z5)-plane, and the unstable subspace E" is the x3 axis.
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Example 4.47. 10 Consider system (4.60), where A is given by

0 —1 0
A=[1 0 o]. (4.66)
0 0 2

The matriz A has the pure imaginary eigenvalue \1o = i (with multiplicity 2) and X3 = 2. This matriz has the
etgenvectors

0 1
11+£210 (4.67)
0 0
corresponding to Ai 2, and
0
0 (4.68)
1
corresponding to \3. Then
0 1
B :< 1], (o > (4.69)
0 0
and
0
B = < 0 > (4.70)
1

Thus, the center subspace E¢ is the (x1,x2)-plane, and the unstable subspace E" is the x3 axis (See Figure 25).

10This example together with its figure is taken from [Per(01]
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|

Figure 25: The center subspace E° is the (z1, x2)-plane, and the unstable subspace E* is the z3 axis.
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FEzample 4.48. Consider system (4.60), where

A= (3 i) (4.71)

and A € R. In Example 4.41, we discussed that the vectors

(é) and ((1)) (4.72)

are the generalized eigenvectors associated with the eigenvalue A\. On the other hand, we have
5 1 0 >
R? — < (0) , <1> . (4.73)

1. if A <0, then E* = R?, E¢ = {0} and E* = {0},

Therefore,

2.if A\ =0, then E* = {0}, E° = R? and E* = {0},
3. if A > 0, then B = {0}, E° = {0} and E* = R2.
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Y2 Y2

> @ « Y1 —i\\ >
& CE
(a) Case A < 0: E* =R? E°= {0} and E* = {0}. (b) Case A > 0: E* = {0}, £ = {0} and E* = R?.
Y2

(c) Case A =0: E* = {0}, £°=R? and E* = {0}

Figure 26: Stable, unstable and center spaces of the system & = Az, where A is given by (4.71).
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THEOREM 4.49. Consider a system
T = Ax, (4.74)

where A is a real n X n matriz. Let E°, E" and E° be the stable, unstable and center subspaces of the system. Then
each of these three spaces are invariant with respect to the flow of system (4.74). Moreover, we have

R" = E° @ E* @ E°. (4.75)
Proof. See [Per01]. O

PROPOSITION 4.50. ' Let O be the origin of R". Consider a point xy € R", and let E*, E* and E¢ be the stable,
unstable and center subspaces of system (4.74), respectively. Then, the following hold.

(i) If mo € E*, then e"zy — O ast — .

(i) If zy € E", then e"zy — O ast — —oo.

(i) If etz — O ast — oo, then xy € E* @ E°.
(i) If exg — O ast — —oo, then vy € E* @® E°.

Proof. See [Per01]. O

1A more comprehensive version of this result is valid: E® (resp. E“) is indeed the set of all points zo in R™ that converge to O exponentially fast as t — oo (resp.
t — —00), i.e. 3a > 0, M > 0 such that [|e!zg| < Me=? for ¢ > 0 (resp. ¢ < 0). On the other hand, E° is the set of the points 29 € R” whose orbits grow at most

sub-exponentially fast as ¢ — +oo, i.e. Ya > 0, le ol _y ) ag ¢ — 400 (see [Rob98], Theorem 6.1).

ealt|
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Definition 4.51. Let O be the origin of R" and consider system (4.74).

(i) We say the equilibrium O is hyperbolic if A has no eigenvalue with zero real part, i.e. E°= {0}, or equivalently
R" = E* @ E". Otherwise, we say O is nonhyperbolic, i.e. A has at least one eigenvalue with zero real part.

(i) We say the equilibrium O is a sink (resp. source) if all the eigenvalues of A have negative (resp. positive) real
parts, i.e. E* =R" (resp. E* =R").

(iii) We say the equilibrium O is a saddle if it is hyperbolic, and the matriz A has at least one eigenvalue with negative
real part and at least one eigenvalue with positive real part, i.e. R" = E* @& E", dim (E®) > 1 and dim (E") > 1.
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4.6. An example of synchronization in linear systems

Recall from the first lecture that a mathematical model for understanding synchronization in networks is given by

N
T; :f, ($2)+OZZA”HZ (xj—x@-), Vi € {1,...,N}, (476)

J=1

where z; € R" (n > 1), A = (A;;) is the adjacency matrix of the network, and f;, H; € C* (R").
We now discuss a simple case of this model: two identical linear systems defined on R that are linearly coupled
together. First, consider two identical linear systems

il = axry (477)

and
.f2 = axro, (478)

where z; € R (i = 1,2) and a is a non-zero real constant. The dynamics of these systems are simple: for any initial
point x;(0), we have z; (t) = e”x;(0), ¢ = 1,2. Thus, z; (¢t) = 0 if a < 0, and |x; (t)| = oo if a > 0.

0 R 0 R
(a) Case a < 0. (b) Case a > 0.

Figure 27: Phase portrait of z; = ax;, where ¢ = 1, 2.
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We can couple these two systems as in (4.76). We have

Zi?l =ary + o (ZCQ - 331) (4 79)
Zijzzaﬂfg—l—a([ljl—ﬂjg) '

where «, the coupling strength, is a real constant. In terms of the notations in (4.76), we are considering n =1, N = 2,
filz) = folz) = ax, A= (]}) and H; = identity.
We say system (4.79) gets into (complete) synchrony if for any initial condition (z1 (0), 2z (0)) € R?, we have

lim | () — 2 (£)] = 0. (4.80)

t—0o0

Figure 28: Two coupled systems.
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e Define z(t) := z1(t) — z2(t). To detect the synchrony in system (4.79), we need to see when z(t) — 0 as t — oo.

e Recall that .
1= (a — a)x] + axe (4.81)
To = ary + (a — ) 9 '

e We have
=11 — a3 = (a—2a)z. (4.82)

This yields z (t) = e(*=2®)!z (0). Thus, lim;_, 2(¢) = 0 for arbitrary z(0) if and only if a — 2o < 0.

e Define o, := §. This constant is called the critical coupling value. We have that system (4.79) gets into (complete)
synchrony if and only if a > «.
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5. Nonlinear systems

5.1. Stability of equilibria

Consider a system
&= f(z), (5.1)

where f : R” — R” is smooth. Assume that z* € R” is an equilibrium of this system, i.e. f(z*) = 0. Let r > 0. An
open ball in R" with radius r, centered at x* is defined by

B, (z*)={z €R": ||z —z"|| <r}. (5.2)
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For arbitrary xg € R", let ¢; (z9) = ¢ (t,zo) be the solution of (5.1) with the initial condition ¢ (0, xq) = zy.

Definition 5.1. The equilibrium x* is called stable if for every e > 0, there exists 6 > 0 such that for all xy € B (z*)
and for all t > 0, we have ¢; (xy) € B, (x*).

Definition 5.2. The equilibrium x* s called unstable if it is not stable.

Definition 5.3. The equiltbrium x* s called asymptotically stable if it is stable, and there exists a & > 0 such that for
all xy € Bs (x*), we have limy_, o ¢ (zg) = .
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Yo Y2
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1

Figure 29: The origin is stable but not asymptotically stable.
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Figure 30: The origin is asymptotically stable.
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U1

Y2

>

Figure 31: The origin is an unstable equilibrium.
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Consider a system
T = f(z), (5.3)

where f: R" — R" is smooth. Assume that the origin of € R" is an equilibrium of this system®?, i.e. f(0) = 0.

e Question: what is the stability of the equilibrium point at the origin? Stable? Asymptotically stable? Or unstable?

e Answer to the question for the linear case:

Consider the case that f is linear, i.e. f (x) = Ax, for some A € R™". Indeed,
i = Au. (5.4)
PROPOSITION 5.4. Consider the decomposition R" = E° @ E* ® E° for system (5.4). Then
(1) If the origin is stable, then E* = {0}. In other words, if E* # {0}, then the origin is unstable.
(1i) The origin is asymptotically stable if and only if B =R", i.e. E* = E° = {0}.
Proof. See [Per01], Theorems 2 and 3 of Section 1.9 with their proofs. O]

Remark 5.5. In the case that E* = {0} and E° # {0}, further investigation is needed to determine the stability
of the equilibrium state at the origin (see e.g. [Per01], Problem 5 of the problem set of Section 1.9).

12We do not lose generality by assuming that the equilibrium is located at the origin (see Remark 3.18).
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5.2. Linearization
5.2.1 Preliminaries: Taylor’s Theorem

Assume f : R" — R" is a C!-smooth function. We write

I f1 (561,5132,...,33”)
fli]= : : (5.5)
Ty, fn(x1, 29, ..., 2p)
where f; : R* =+ R (i =1,...,n) are CL.

THEOREM 5.6. (Taylor’s Theorem) Assume f is k-times continuously differentiable at the origin. Let oy, i =1,...,n
be non-negative integers. Define |a| = aq + -+ + ap, al = aglag! -+ !, and 2 = 1 -2, Then, for |a| = k and
i=1,...,n, there exist functions h; o (), such that lim,_,0 h; o () =0, and

X1 Z|a\§k éDafl (0) % + Z|a\:k hl,a (:E) z®
Jf1:]= : . (5.6)
Ln ngk ﬁDafn (0) 2 + Zm:k hp,o () 2°

Remark 5.7. Roughly speaking, Taylor’s Theorem states that, close to the origin, we can write f(x) as P(x) +'

remainder’, where P is a (non-zero) polynomial and the remainder is a function of x which often! can be neglected
since, in comparison to P(x), it is small.
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FEzxample 5.8. (Taylor’s Theorem for n = 1) Suppose f : R — R is k-times continuously differentiable. Then, we can
write f (x) = P (x) + R (x), for

P(e) = FO)+ 1 f Ox+ 5 f" )2 + 5" (0) 2+ 4 270 (0) 2 (57)
and

R(z) = h(z)a" (5.8)
where f*) stands for the k-th derivative, and lim,_h (x) = 0.

Ezample 5.9. Consider the function f (x) = sinxz. This function is C*° (we can differentiate it as many times as we

want). Write sinx = P (x) + R (z), where P is a polynomial of degree k, and R satisfies lim,_ Rx(ff) = 0. The following
are some examples of P and R.

(i) P(z) =z, and R (x) = h(z) x such that lim, o h (z) = 0.

(i) P(z) =x — g—?, and R (x) = h (z)2® such that lim, o h (z) = 0.

11

(iii) P(z) = o — & + 2 — L4 20 20 and R(x) = h(z) 2" such that lim, ,oh (z) = 0.

11

(i) P(a)=a— % + 2 — L 420 2o and R(x) = h(z) 2 such that lim, o h(z) = 0.
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Example 5.10. (Taylor’s Theorem for n = 2) Suppose f : R? — R?, given by x > (f1 (2), fo (z)), where x = (21, 23),
18 3-times continuously differentiable. We can write

J1 (x1,$2) = h (0 0)

+%.8£(00) +% af:(()())
i % ' 22 (0,0)2) 1111| 8:2];1952 (0.0) w12 + 21! gf; (0,0) 7% (59)
* % ' gfé (0,0) 7} 2!11! | a%}z (0,0) 7 1'12v 8:2?56% (0,0) 212 + 55 gfé (0,0) 7
+ hugo (@) @F + hgr (x) afae + hyae (x) 2123 + hgs (z) 23
such that all the functions h converge to 0 as x — 0. Regarding fs, we have
fa (z1,22) = f2(0,0)

3 Zomnih Lo

+ % : g"% (0,0) a3 1!11! : azg@ (0,0) 2125 +% g"% (0,0) 23 (5.10)

* 31! | gf?% (0,07} 2!11! | af%];xg (0,0) s + 357 aaijgxg (0,0) 7125 + 27 gfz (0,0) 7

+ ho 30 (2) 5 + hooy (¥) 37 + hojs () 123 + hogs () 75

such that all the functions h converge to 0 as x — 0.
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5.2.2 Linearization at equilibria: stable and unstable invariant manifolds theorem
Consider a system

&= f(z), (5.11)

T fi(z1,29,0,70)
where f : R" — R" is smooth. Think of f as f ( : ) = ( : ) Assume that the origin is an equilibrium of
Tn fn(xlaw%"'al‘n)

this system, i.e. f(0) = 0. According to Taylor’s theorem, we can write system (5.11) as
t=Df0)x+ F(x), (5.12)

where F' (z) = h (x) x, for some h satisfying lim, ,oh (x) = 0, and D f(0) (called the derivative or differential of f at 0)
is given by the n X n matrix

gl () 2z (0) ... Z2(p
Df(0) = 8%1:() 3%2:() . 8%_() (5.13)
7 (0) 32(0) -+ F(0)

Definition 5.11. Consider system (5.11). The expressions Df (0)x and F (z) are called the linear and nonlinear
parts of the system at the origin, respectively. Moreover, we call the linear system

t=Df(0)z, (5.14)

the linearized system at the origin.
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Definition 5.12. Consider system (5.11) with its equilibrium state at the origin. We say that the origin is a hyperbolic
equilibrium if it is a hyperbolic equilibrium for the linearized system (see Definition 4.51), i.e. all the eigenvalues of
Df(0) have non-zero real parts. An equilibrium which is not hyperbolic is called nonhyperbolic.

Remark 5.13. We can think of the linearized system as an approximation of system (5.11) near the origin. A natural
question that arises here is that to what extent the stability of the linearized system gives information about the stability
of the original (nonlinear) system.
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THEOREM 5.14 (stable and unstable invariant manifolds theorem). Consider a system & = f (z), where f : R" — R"
is Cl-smooth. Assume that the origin O of R" is a hyperbolic equilibrium. Let E* and E" be the stable and unstable
subspaces of the linearized system at O, respectively, and suppose k := dim (E*). Consider an arbitrary point o € R"
and let x(t), where x(0) = xg, be its orbit. Then, there exist manifolds W* (O) and W* (O), both containing the origin,
such that

(1) z(t) = O as t — oo if and only if xo € W?* (O).
(ii) x(t) = O as t — —oo if and only if xo € W* (O).

(1) W# (O) and W" (O) are invariant with respect to the flow of the system and they are tangent to E* and E* at O,
respectively.

Proof. See [Per01]. O
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Definition 5.15. Consider a C! system © = f(x) on R™ with an equilibrium at the origin O. We say O is a sink,
source or saddle if it is a sink, source or saddle for the linearized system & = D f(0)x, respectively.

e Recall that O is a sink (resp. source) of @ = D f(O)z if all the eigenvalues of D f(O) have negative (resp. positive)
real parts. It is a saddle if it is hyperbolic, and D f(O) has at least one eigenvalue with negative real part and at
least one etgenvalue with positive real part.

Remark 5.16. By definition, sinks, sources and saddles are hyperbolic.

Remark 5.17. It follows from the stable and unstable invariant manifolds theorem that sinks are asymptotically stable,
sources and saddles are unstable.
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FExample 5.18. Consider the nonlinear system

: 2

T = —x1 — T5,

! b (5.15)

To = T9 + 7.

The origin s an equilibrium of this system. The linearized system at the origin is given by

T] = —x1,
! ! (5.16)
To = T9.

The corresponding stable subspace E° and unstable subspace E" are the horizontal and vertical azes, respectively. Figure
32 shows the stable and unstable manifolds of the origin of system (5.15) (see [Per01], Example 2 on page 111 for further
details). The stable and unstable manifolds are one-dimensional and tangent to E* and E", respectively.

X2

u\ [E
0
// S

Figure 32: The stable and unstable invariant manifolds of the origin of system (5.15).
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FExample 5.19. Consider the nonlinear system

il = —xy,
Zbg = —I9 + l’%, (517)

. 2
r3 = T3+ 7,

The origin 1s the only equilibrium of this system. The linearization of this system at the origin is

~1 0 0
0 —10]. (5.18)
0 0 1

The eigenvalues are —1 and 1. The corresponding stable subspace E® and unstable subspace E" are the (x1,xs)-plane
and x3 azis, respectively. Figure 33 shows the stable and unstable manifolds of the origin of system (5.17) (see [Per01],
Ezample 1 on page 105 for further details). The stable manifold is 2-dimensional and tangent to E® at the origin. The
unstable manifold is 1-dimensional and tangent to E* at the origin.

X3

] X2

Figure 33: The stable and unstable invariant manifolds of the origin of system (5.17).
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Example 5.20. Consider the nonlinear system

T = —3r1 — 2 —:c4+x:c,
1 1 2 9 172 (5.19)

ij = 2331 — 3%2 + x%eml.

The origin s an equilibrium of this system. The linearization of this system at the origin is

-3 =2
(22 o0
The eigenvalues are —3 + 2i that have negative real parts. The stable manifold is a neighborhood of the origin (an open
ball around the origin). The unstable manifold is the origin itself, i.e. W*" (0) = {0}.

Ezample 5.21. Consider a nonlinear system & = f (x), where f : R — R is smooth. Assume 0 is an equilibrium, i.e.
f(0)=0. We have

(1) If f'(0) <0, then W*(0) is an open interval containing 0, and W*" (0) = {0}.
(ii) If f7(0) > 0, then W*(0) = {0}, and W"(0) is an open interval containing 0.
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5.3. Lyapunov functions

e The method of linearization can be used to determine the stability of hyperbolic equilibria.

e We're going to introduce a method which can be used to investigate the stability of nonhyperbolic equilibria.

Definition 5.22. Consider a system & = f (), where f : R" — R" is C*-smooth, and assume that x* is an equilibrium.
Let U be an open subset of R™ containing x*. A Cl-smooth function V : U — R is called a Lyapunov function if

(1) V (z*) =0.
(i1) for all x € U\ {z*}, we have V (z) > 0.

(iii) for any arbitrary solution x(t) of © = f (x), we have that V (x (t)) is a non-increasing function of t, i.e. if t; < ta,
then V (z (t2)) < V (z (t1)).

Remark 5.23. An equivalent formulation of item (ii1) of the definition of Lyapunov function is V <0, where

AV (1)
dt

v _py|
t=0 z(0) dt

=DV
t=0

f (2 (0)). (5.21)

(0)
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Example 5.24. 13 Consider the system

. 3
T] = —x,
S (5.22)

The origin is an (and the only) equilibrium of this system. Linearization of this system at the origin is the zero matrix,
i.e. (39). Thus, the origin is a nonhyperbolic equilibrium point. Define V : R* — R by

V (21, 19) = x] + 3. (5.23)
We now show that V' is a Lyapunov function.
(1) V wvanishes at the origin, i.e. V (0,0) = 0.

(i) Consider an arbitrary point (x1,z2) € R*\ {(0,0)}. Since (x1,22) # (0,0), we have x1 # 0 or xo # 0. Therefore,
V(l’l,x‘g) = l'zll + LL’% > 0.

(iii) Let (x1 (t),xo (t)) be an arbitrary solution of system (5.22). We have

AV (i (1) 72 () _ d

v it = = ([ O + 2 (8)') = =4 Lo (O - [2 OF + 4w OF - [ (0 = 0. (5.24)

Thus, the condition V <0 is satisfied.

As shown above, the function V' satisfies all the three conditions of Definition 5.22, and therefore, it is a Lyapunov
function.

13This example is taken from [Per01]
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Example 5.25. 1* Consider the system

T1 = o,
L , (5.25)
X9 = —T1 — T1T2.

The origin is an (and the only) equilibrium of this system. Linearization of this system at the origin is ( % ), with
eigenvalues +i. Thus, the origin is a nonhyperbolic equilibrium point. Define V : R> — R by

V (21, 15) = 2% + 23 (5.26)
We now show that V' is a Lyapunov function.
(1) V wvanishes at the origin, i.e. V (0,0) = 0.

(ii) Consider an arbitrary point (xq,z2) € R*\ {(0,0)}. Since (x1,22) # (0,0), we have x1 # 0 or xy # 0. Therefore,
V(xl,a:Q) = x% + x% > 0.

(11i) Let (x1 (t),xo (t)) be an arbitrary solution of system (5.22). We have

IV oV
V= —— @+ —— - do = 221 (22) + 220 (—21 — 2fx0) = —2123 (5.27)
0xy 01y

Thus, the condition V <0 is satisfied.

As shown above, the function V' satisfies all the three conditions of Definition 5.22, and therefore, it is a Lyapunov
function.

1 This example is taken from [Wig03]
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Example 5.26. 1° Consider the system

&=2y(z—1),
y=—-x(z—-1), (5.28)
z = ny.

2

The origin 1s an equilibrium and the linearization of the system at the origin s (g % §). The eigenvalues of this matrix

are 0 and £+/2i. This means that the origin is a nonhyperbolic equilibrium.
Consider V (x,y, z) = 2*+2y*. Then, V =222y (z — 1)] +4y [~z (z — 1)] = 0. Moreover, V (0,0,0) = 0. However,
V' is not a Lyapunov function. This is because V vanishes at all the points on z-azis, i.e. V (0,0,2) =0 for all z € R.

15This example is taken from [VS18]
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THEOREM 5.27. Consider a system @ = f (x), where f : R* — R" is Cl-smooth, and assume that z* is an equilibrium.
Let U be an open'® subset of R" containing *. Let V : U — R be a Lyapunov function. We have

(i) If V <0, then * is stable.

(ii) If V < 0 for all z € U\ {2*}, then =* is asymptotically stable.

16 A set U C R™ is open in R™ if for every point x € U, there exists an open ball B, (z), for r > 0 (see (5.2)), such that B, () C U.
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Remark 5.28. According to Theorem 5.27, we have that the origin is an stable equilibrium for systems (5.22) and
(5.25). Note that, in both of these cases, the origin is a nonhyperbolic equilibrium and so the linearization at these
equilibria does not directly give information about stability of them.

Remark 5.29. Assume that the stability of an equilibrium of a system is guaranteed due to the existence of a Lyapunov
function V satisfying V< 0. Sometimes, it is possible that there exists another Lyapunov function L such that L < 0
which implies that the equilibrium point is in fact asymptotically stable.
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Example 5.30. 17 Consider the system
Zifl = —2%2 + Toxg — CC:I),
.j72 =1 — X1T3 — LC%, (529)
Zj;‘3 = T1X9 — ng
L S . . . . . {02
The origin is an equilibrium of this system. Linearization of this system at the origin is ((1) 0

). The eigenvalues of
this matriz are 0 and £v/2i. Define V : R* - R by

oo O

V (21, 29) = 27 + 2205 + 5. (5.30)
We now show that V' is a Lyapunov function.
(i) V' wvanishes at the origin, i.e. V (0,0,0) = 0.

(ii) Consider an arbitrary point (x1, s, x3) € R*\ {(0,0,0)}. Since (x1, s, x3) # (0,0,0), we have 1 # 0 or x5 # 0 or
w3 # 0. Therefore, V (x1, x9, 3) = 2% + 223 + 23 > 0.

(i) Similar to Example 5.24, we show that V < 0. We have

ov oV ov
V=—n0 . Ci?l +—- .fz + —- Cii'3 = 25131 (—23?2 + Tox3 — xi’) + 4562 (5171 — 13 — x%) + 21‘3 (xlxg — CC%)
8561 (3’.752 8x3

(5.31)
= -2 (:15411 + 225 + xé)

Thus, V < 0 if (x1, 29, 23) # (0,0,0), and V = 0 if (x1, z9, 23) = (0,0,0). Therefore, the condition V < 0 holds.

The function V' satisfies all the three conditions of Definition 5.22, and therefore, it is a Lyapunov function.

e According to Theorem 5.27, the origin is an asymptotically stable equilibrium for system (5.29).

17This example is taken from [Per01]
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5.4. Periodic orbits: stability, limit cycles and Poincaré maps

Definition 5.31. Consider a system & = f(x), where f : R" — R" is smooth. Let T € R" and assume it is not an

equilibrium point. Then, I' = {¢ (t,T), t € R} is said to be a periodic orbit or a cycle if there exists T > 0, such that
o(T,7) =T=.

e Geometrically, a periodic orbit is a closed curve.

e Assume I is a periodic orbit and consider r > 0. Let U, (I') be the set of all points x € R™ whose distance from T’
is less than 7.
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Analogous to equilibria, we can define the concept of stability for periodic orbits too. For arbitrary xy € R", let
o1 (z9) = ¢ (t,z0) be the solution of the system with the initial condition ¢ (0, xy) = .

Definition 5.32. The cycle T is called stable if for every e > 0, there exists § > 0 such that for all zo € Us (I') and
for allt >0, we have ¢y (z9) € U, (T).

Definition 5.33. The cycle I' is called unstable if it is not stable.

Definition 5.34. The cycle T" is called asymptotically stable if it is stable, and there exists a 6 > 0 such that for all
xg € Us (I'), we have limy_, ¢y (xg) =T,
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e A standard approach to investigate the dynamics near a periodic orbit is to study an associated Poincaré map.

Figure 34: Here, I' is a periodic orbit in the plane. The Poincaré map P maps x € 3 to P(x) € X.
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Figure 35: Here, I' is a periodic orbit in the 3-dimensional space. The cross-section Y. is 2-dimensional. The Poincaré

map P maps z € ¥ to P(x) € X.
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5.5. Bifurcations

Consider a system
= f(x,a), (5.32)

where 2 € R” and o = (ay,...,a;) € R*. The variable z is the phase variable.

e We can think of system (5.32) as a model for a physical problem for which, « is a controlling parameter, such as
temperature, pressure, etc.

e We can also think of system (5.32) as a family of systems. For each fixed «, we have a system of ODEs.

Example 5.35. Consider the system
i =12° — ax, (5.33)

where x € R, and o € R. For each fized o, we have a system of ODEs. For instance,
(i) When o = 4, we consider the system i = x3 — 4x.
(ii) When o = 0, we consider the system @ = .

(i) When o = —10, we consider the system @ = z* + 10z.
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Example 5.36. Consider the system
i’l =T — Ozll'g + QT 129,

5.34
To = 4x9 + 043561;6% — ozgafll, ( )
where © = (x1,79) € R?, and a = (a1, az,a3) € R3. For each fived o, we have a system of ODEs. For instance,
(i) When a = (0,0,0), we consider the system
.%"1 =T
5.35
.%"2 = 4.%2. ( )
(ii) When o = (1,2,0), we consider the system
- 3
T1 =21 — X5 + 27129,
.1 1 9 4 122 (5.36)
Ty = 49 — 227,
(iii) When o = (—1,8,—2), we consider the system
&1 = 1 + 25 + 81129,
1 1 9 122 (5.37)

To = 4wy — 2x1x§’ — 831:%,



SYNCHRONIZATION FROM A MATHEMATICAL POINT OF VIEW 109

e In this course, we focus on the case that the parameter space is one dimensional, i.e. o € R.
e Consider a system
r=f (:E7 a) ] (538)
where x € R" and a € R. We say a bifurcation occurs at a = a. if the dynamics of the system changes suddenly
at a = a.

e The parameter value «. is called the bifurcation value.

e Recall from the first lecture that a mathematical model for understanding synchronization in networks is given by

N
T :fz (LL’Z)—f—OéZAUHZ (I’j—ZCi), Vi € {1,...,N}, (539)

J=1

where z; € R" (n > 1), A = (A;;) is the adjacency matrix of the network, and f;, H; € C* (R"). As it was mentioned
in the first lecture, there exists a parameter value a, (and we also discussed for the linear case in Section 4.6), called
critical coupling strength, such that for a < ., system (5.39) is not in synchrony but it gets into synchrony for
a > Q.
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Example 5.37. Consider the system

i =2’ — a, z,a € R. (5.40)

e For a <0, system (5.40) has no equilibria. The phase portrait of this system is shown in Figure 36.

= =
R

Figure 36: Case a < 0.

e For a =0, system (5.40) has a nonhyperbolic equilibrium at x = 0. The phase portrait of this system is shown in
Figure 37.

= =

L
0 R

Figure 37: Case a = 0.

e Fora >0, system (5.40) has two hyperbolic equilibria at x = —\/a (sink) and © = \/a (source). The phase portrait
of this system is shown in Figure 38.

= o - ® ==
_Ja Ja R

Figure 38: Case a > 0.

o A bifurcation occurs in this system at o = 0.
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X

-

2

Figure 39: Bifurcation diagram for the system & = z* — o, where z,a € R.
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Hopf bifurcation

e Consider the nonlinear planar system
&= —y+a(p—a® -y,

5.41
y=z+y(p—12"—y), (5.41)

where 1 € R.

pw—1

e The origin is an equilibrium. The linearization at the origin is ( 1 ) The corresponding eigenvalues are p = .

e We can write system (5.41) in polar coordinates. Define

ri=+x?+y? and 60:= arctan%, where (z # 0). (5.42)

Equivalently, we have x = r cosf and y = rsin 6.

(z,y)

Figure 40: Polar coordinates.
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e Writing system (5.41) in (r, #)-coordinates, we have

fzr(,u—rQ),

i 1 (5.43)

e - = 0 means that r (¢) is constant.

e Corresponding to the non-zero roots of 7, we have a periodic orbit for system (5.41), i.e. if 7 vanishes at r = ry and
ro # 0, then (x (t),y (t)), such that [z (t)]> + [y (t)]* = 2, is a periodic orbit of system (5.41).

e Analyzing system (5.43), we can draw the phase portrait of system (5.41); see Figure 42.

-

H <0 H >0

Figure 41: For p < 0, system (5.41) has an asymptotically stable equilibrium at the origin. Once u becomes positive,
the origin loses its stability and an asymptotically stable cycle gets born.
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_.----____I.L #

Figure 42: The periodic orbit associated with p is shown by I',. This periodic orbit appears only when u > 0.
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6. Chaos theory

6.1. Preliminaries

Assume X is a subset of R”, where n > 1.

e We say X C R” is bounded if there exists » > 0 such that X C B, (O), where B, (O) is the ball with radius r and
centered at the origin.

e We say X C R" is open if for every = € X, there exists a ball B, (), where r > 0, and B, (x) C X.

— Sometimes, if an open set X contains a set A, we say X is a neighborhood of A.
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e We say X C R" is closed if it contains all of its limit points (z € R" is a limit point of X if there exists a sequence
{z,} in X which converges to x).

e We say X C R" is compact if it is closed and bounded.
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6.2. Attracting sets and attractors

Consider a system
where f: R" — R", for n > 1, is smooth. Suppose that ¢; = ¢ (¢, x) is the flow of the system.

e Throughout, let A C R" be closed and invariant.

Definition 6.1 (Attracting set). A set A is an attracting set if there exists a neighborhood U of A such that U is
positively invariant, i.e. ¢ (t,U) C U for allt > 0, and we have

(¢ (t.U)=A. (6.2)

t>0

Moreover, the set U is called a trapping region.

Definition 6.2 (Basin of attraction). The basin of attraction of the attracting set A is the set of all initial conditions
xo € R" whose forward orbits lies or enter the trapping region U. In other words, the basin of attraction is Ui<o ¢ (t, U).
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Example 6.3. 1® Consider the planar system

.3
rerT (6.3)
y=-Y.
The phase portrait of this system is shown in Figure 435.
e This system has three equilibria (—1,0), (0,0) and (1,0). An open set U containing A := [—1,1] x {0} can be found

such that U is positively invariant and every initial condition in it approaches A (see [GH13]).

o The set A is an attracting set. The open set U is a trapping region, and the basin of attraction is the whole R?.

Figure 43: Phase portrait of system (6.3).

18See also Example 8.2.2 in [Wig03] and the discussion about Figure 14.3 in [HSD12].
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Definition 6.4. We say A is an attractor if it is a topologically transitive attracting set.

Definition 6.5 (Topological transitivity). We say ¢; is topologically transitive on A if for any two arbitrary points
1,y € A and any two open sets Uy and Us in A, where Uy contains x1, and Uy contains xo, we have that there exists
a solution curve starting in Uy and passing through Us,.
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6.3. Chaos and strange attractors

Consider again a smooth system
on R" with the flow ¢ = ¢ (¢, ). Throughout, let A C R" be compact and invariant.

Definition 6.6 (Sensitivity to initial conditions). We say ¢; has sensitivity to initial conditions on A if there exists
€ > 0, such that for any x in A and any r > 0, there exist y € B, (x) and t* > 0 such that ||¢ (t*,2) — ¢ (t*,y) || > €.
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Definition 6.7. We say ¢; is chaotic on A if the following hold.
(i) ¢+ is topologically transitive on A.
(11) ¢¢ has sensitivity to initial conditions on A.

Remark 6.8. Some literature requires the following extra condition in the previous definition: the periodic orbits of
¢ (t,x) are dense in A.

Definition 6.9 (Strange attractor). Let A be an attractor. We say A is a strange attractor if ¢; is chaotic on A.

FExample 6.10. Lorenz attractor!
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6.4. Lyapunov exponents

Consider a smooth system
T = f(x), r € R"

For an initial state xg, let x (t) be the solution of the system satisfying = (0) = .

e We are interested in how nearby orbits behave relative to each other as ¢ — oo.
e We linearize system (6.5) about z(t). This gives
0=Df (x(t))v, veR"

— Equation (6.6) is called the variation equation along the solution z ().

— The variational equation is nonautonomous (directly depends on t).

123

(6.5)

(6.6)

— There exists a matrix-valued function X (t,xg), called the fundamental solution matrix, such that, for any
vo € R", the function v (t) = X (¢, x¢) vy is the unique solution of the initial value problem © = D f (z (¢)) v and

v (0) = .
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Let X (t,z9) be a fundamental matrix solution, and e # 0 be an arbitrary vector in R". For the linearized system

along x(t), the expression
| X (¢, mo) e

(6.7)
el
measures the expansion along z (¢) in the direction of e.
Definition 6.11. The Lyapunov exponent along the orbit of xy and in the direction of e # 0 ¥ is given by
1 X (t
A (g, e) = limsup - log IX (, 20) eH' (6.8)
t00 lell

X (2, zo)e]|

To+ €
Zg

Figure 44: We can approximate the separation rate of the orbits infinitesimally close to {z (¢)} by linearizing the vector
field along z ().

19We make the agreement A (zg,0) = —oc.
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PROPOSITION 6.12. Let v € R. Then, the set {e € R" : X (xg,e) < r} is a vector subspace of R™.
Proof. See [Wig03], Lemma 29.1.1. O

COROLLARY 6.13. It follows from Proposition 6.12 that there are at most n (the dimension of the phase space)
distinct Lyapunov exponents associated with the orbit of xy.

Definition 6.14. The set of all the Lyapunov exponents associated with an orbit is called the Lyapunov spectrum of
that orbit.
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6.4.1 Maximum Lyapunov exponent

Let Amax = Amax (Tg) be the maximum Lyapunov exponent associated with a given orbit. Then, A\p.x > 0 implies
sensitivity to initial conditions.

LEMMA 6.15 (A lemma from Linear Algebra). Let A be an n x n real matriz. Consider the standard euclidean vector

norm || - || (2-norm) and define ||A|| := max ”ﬁfnu, for 0 # x € R". Then, || A| is equal to the largest eigenvalue of AT A

(also known as the largest singular value of A).

According to Lemma 6.15, if a (t) is the largest eigenvalue of [X (t,20)]' X (t,20) (i.e. largest singular value of
X (t,z9)), then

1
Amax (Zg) = lim sup n loga(t) . (6.9)

t—00
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7. Synchronization in coupled systems

7.1. Graph representation

e Recall that a mathematical model to study synchronization in networks is given by
N
SCZZfZ (IZ)—FOZZAZ]HL (SCj—LUZ‘), Vi € {1,,N}, (71)
j=1

where z; € R" (n > 1), A;; > 0 are real constants, and f;, H; € C* (R").

7.1.1 Adjacency matrix

e We can associate a (directed weighted) graph to system (7.1) as follows:

— The graph has N nodes, and node number ¢ corresponds to the variable x;.

— There exists an edge starting from node j and ending at node ¢ if and only if A;; > 0. We can also think of A;;
as the weight of this edge.

e The matrix A defined by A := (A4;;) is called the adjacency matrix of the graph.
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Ezample 7.1. For given functions f; and H; (i =1,...,5), consider the system

21 = fi(v1) + a[Hy (v2 — 21) + 2H; (24 — 21)]

Ty = fo(x2) + a[Ha (x3 — 22)],

i3 = f3 (v3) + [TH;3 (24 — 23)] (7.2)
Ty = fi(x4) + @ [3Hy (25 — 24)]

&5 = f5 (v5) + o [Hs (21 — x5) + 3H5 (02 — x5)] .

The corresponding graph is shown in Figure 45. The adjacency matrix is

01020
00100

A=|o000 70 (7.3)
00001
13000

Figure 45: The graph corresponding to system (7.2).
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7.1.2 Laplacian matrix

e Consider again the system

N
$Z:fl(xl)+@ZAleZ($j_xz)a \V/ZE{L,N}
=1
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(7.4)

e Suppose that the couplings are identical, i.e. H; = H; for all ¢ and j, and there exists H such that H; (v; — x;) =

H (x;) — H (x;)*°. Then, (7.4) is written as

N
di= fi(w) + ) Ay [H (x;) — H (z;)].
j=1
e Note that
N N N
D AGH (@) —H(z) = | > AyH(x)| —H(z:) > Ay
J=1 J=1,j#i J=1, j#i
e Define the N x N matrix L := (L;;) by
TS LAy ifi=

e The matrix L is called the Laplacian matrix.

e Using the Laplacian, we can write (7.5) as

J=1

20Such a function H naturally appears when we linearize the system at the synchronization subspace M := {(z1,. .., rN) ERYW gy =qp =+ =

(7.5)

(7.6)

(7.7)

(7.8)
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Remark 7.2. It follows from (7.7) that the sum of all the entries of each arbitrary row of the Laplacian matriz is
zero.

01 1 -1

O—@ =1 0) =4 )
01 1 2 1 —1

A=100 0 L=(o0o o o

3 =< 2 110 —1 -1 2
on 011 1 3 1 -1 —1
1011 1 3 -1 -1
" A=11191 L=1|_1 1 3 1
@9 1110 1 -1 -1 3
(1) 01020 3 -1 0 -2 0
© 00100 0 1 -1 0 0
A=loo0o0 70 L=lo o 7 -7 o0
00001 0 0 0 1 -1
D 3 13000 1 -3 0 0 4

Figure 46: A few examples of (directed and undirected) graphs and their associated adjacency and Laplacian matrices.
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7.1.3 Spectral properties of the Laplacian matrix

THEOREM 7.3. For a giwen arbitrary graph, the laplacian matriz L has a zero eigenvalue.

Proof. Let
lin - i
L=1|: . (7.9)
lnl e lnn

1
be the Laplacian matrix, and consider the vector 1 = ( : ) (the n-dimensional vector whose entries are all one). Then,

1
lin - by 1 i+ lo+--+ iy,
Li=1{: . L = : : (7.10)

This means that the ¢-th entry of the vector L1 is the row-sum of the i-th row of the Laplacian L. However, the row-sum
of each row of L is zero. Thus, L1 = 0. This implies that 0 is an eigenvalue of L, and 1 is an associated eigenvector. []
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THEOREM 7.4. All the eigenvalues of the Laplacian matriz L of a given graph have non-negative real parts.

Proof. Let
la -+l
L=1: - (7.11)
lnl e lnn

be the Laplacian matrix. Since the row-sums of L are zero, for each i, we have [; = > i 7éi|lij|. Thus, all the Gershgorin
disks lie in the right side of the imaginary axis in the complex plane, as desired. []
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7.2. Synchronization
e Define M := {(xq,...,ox) ER™ : 2y =29 = --- = 2n}.

— M is a vector subspace of R™.
— We call M the synchronization subspace.

— Suppose a solution (x; (t),...,zn (t)) of system (7.1) entirely lies in M (for instance, this can happen when M
is invariant). In this case, we have x; (t) = -+ = zx (t). Such a solution is called a synchronized solution.

e We say system (7.1) gets into (complete) synchrony if M attracts nearby orbits.

— More precisely, if there exists an open neighborhood U of M such that for any initial condition (x; (0),...,zx (0)) €
U, and any 1 <1,57 < N, we have
lim ||@; (t) —x; (¢) || = 0. (7.12)

t—o0
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7.3. An example of synchronization between two coupled nonlinear systems

We now discuss model (7.1) for two coupled identical systems with identity coupling. Consider the system

= f(x1) +a(v2— 1),

To = f(22) + a(x1 — 239), (7.13)

where f : R" — R"”, and « is the coupling strength.

Figure 47: Two coupled systems.

e The synchronization subspace is M = {(z1,12) € R* : z1 = 25},
— Observe that M is invariant with respect to the flow of system (7.13).

e System (7.13) gets into synchrony if for any initial condition (x1 (0), 2 (0)) close to M, we have

lim [z (£) — 2 () || = 0. (7.14)
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e We show that if the coupling is sufficiently strong, i.e. « is sufficiently large, then system (7.13) synchronizes.
e Define z(t) := x1(t) — z2(t). To detect the synchrony, we need to see if z(¢) — 0 as t — oo when z (0) is small.

e Recall that

jfl Zf($1>+04(332—1?1),
Ty = f(72) + a(r1 — 12).
Thus
z = Z"l — j?z = f (.I‘l) — f (.%‘2) — 20z. (715)
e Taylor expanding f (x; — z) at z = 0 gives
fx)=f(z1—2)=f(z1) = Df (z1) 2+ O (||]*) - (7.16)

Thus, near z = 0, we have

2= [Df (z1(t) — 21 2+ O (]|2]]%) , (I = identity matrix) (7.17)
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e To analyze the stability of the solution z = 0, we consider the linear part of the system, i.e.

z2=[Df (x1(t)) — 2al] 2.

e Define a new variable w (t) = €2z (¢). Then,

W = 2ae’z + 23
= 20w + > [Df (21 (1)) — 2al] 2
= [Df (21 (1)) w.

e Equation w = [Df (z1 (t))] w is the variational equation for the system &; = f (z1) along the orbit x ().

e Let A be the maximal Lyapunov exponent of the orbit {z; (¢)}. Then,

lw(t) ]| < Ce™, for some constant C' > 0.

e Thus, ||z (t) || < Ce*~2) and therefore o, = 5.
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(7.18)

(7.19)

(7.20)
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