5.4. Periodic orbits: stability, limit cycles and Poincaré maps

Definition 5.31. Consider a system $\dot{x}=f(x)$, where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is smooth. Let $\bar{x} \in \mathbb{R}^{n}$ and assume it is not an equilibrium point. Then, $\Gamma=\{\phi(t, \bar{x}), t \in \mathbb{R}\}$ is said to be a periodic orbit or a cycle if there exists $T>0$, such that $\phi(T, \bar{x})=\bar{x}$.

- Geometrically, a periodic orbit is a closed curve.
- Assume Γ is a periodic orbit and consider $r>0$. Let $U_{r}(\Gamma)$ be the set of all points $x \in \mathbb{R}^{n}$ whose distance from Γ is less than r.
$U_{r}(\Gamma)$

$$
n \in \mathbb{R}^{n}
$$

$$
\| x-\rho
$$

$$
\text { ditto }(x, r)<r
$$

Analogous to equilibria, we can define the concept of stability for periodic orbits too. For arbitrary $x_{0} \in \mathbb{R}^{n}$, let $\phi_{t}\left(x_{0}\right)=\phi\left(t, x_{0}\right)$ be the solution of the system with the initial condition $\phi\left(0, x_{0}\right)=x_{0}$.

Definition 5.32. The cycle Γ is called stable if for every $\epsilon>0$, there exists $\delta>0$ such that for all $x_{0} \in U_{\delta}(\Gamma)$ and for all $t \geq 0$, we have $\phi_{t}\left(x_{0}\right) \in U_{\epsilon}(\Gamma)$.

Definition 5.33. The cycle Γ is called unstable if it is not stable.
Definition 5.34. The cycle Γ is called asymptotically stable if it is stable, and there exists a $\delta>0$ such that for all $x_{0} \in U_{\delta}(\Gamma)$, we have $\lim _{t \rightarrow \infty} \phi_{t}\left(x_{0}\right)=\Gamma$.

Figure 34: Here, Γ is a periodic orbit in the plane. The Poincare map P maps $x \in \Sigma$ to $P(x) \in \Sigma$.

$$
x \rightarrow P(x) \rightarrow P^{2}(x)=P(P(x)) \mapsto x_{0}
$$

Figure 35: Here, Γ is a periodic orbit in the 3-dimensional space. The cross-section Σ is 2-dimensional. The Poincaré map P maps $x \in \Sigma$ to $P(x) \in \Sigma$.

5.5. Bifurcations

Consider a system

$$
\begin{equation*}
\dot{x}=f(x, \alpha), \quad \dot{x}=f(\eta, T) \tag{5.32}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{R}^{k}$. The variable x is the phase variable.

- We can think of system (5.32) as a model for a physical problem for which, α is a controlling parameter, such as temperature, pressure, etc.
- We can also think of system (5.32) as a family of systems. For each fixed α, we have a system of ODEs.

Example 5.35. Consider the system

$$
\begin{equation*}
\dot{x}=x^{3}-\alpha x, \tag{5.33}
\end{equation*}
$$

where $x \in \mathbb{R}$, and $\alpha \in \mathbb{R}$. For each fixed α, we have a system of ODEs. For instance,
(i) When $\alpha=4$, we consider the system $\dot{x}=x^{3}-4 x$.
(ii) When $\alpha=0$, we consider the system $\dot{x}=x^{3}$.
(iii) When $\alpha=-10$, we consider the system $\dot{x}=x^{3}+10 x$.

Example 5.36. Consider the system

$$
\begin{align*}
& \dot{x}_{1}=x_{1}-\alpha_{1} x_{2}^{3}+\alpha_{2} x_{1} x_{2}, \tag{5.3.3}\\
& \dot{x}_{2}=4 x_{2}+\alpha_{3} x_{1} x_{2}^{3}-\alpha_{2} x_{1}^{4},
\end{align*}
$$

where $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, and $\alpha=\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right) \in \mathbb{R}^{3}$. For each fixed α, we have a system of ODEs. For instance,
(i) When $\alpha=(0,0,0)$, we consider the system

$$
\begin{align*}
& \dot{x}_{1}=x_{1} \\
& \dot{x}_{2}=4 x_{2} . \tag{5.35}
\end{align*}
$$

(ii) When $\alpha=(1,2,0)$, we consider the system

$$
\begin{align*}
& \dot{x}_{1}=x_{1}-x_{2}^{3}+2 x_{1} x_{2}, \tag{5.36}\\
& \dot{x}_{2}=4 x_{2}-2 x_{1}^{4},
\end{align*}
$$

(iii) When $\alpha=(-1,8,-2)$, we consider the system

$$
\begin{align*}
& \dot{x}_{1}=x_{1}+x_{2}^{3}+8 x_{1} x_{2}, \\
& \dot{x}_{2}=4 x_{2}-2 x_{1} x_{2}^{3}-8 x_{1}^{4}, \tag{5.37}
\end{align*}
$$

- In this course, we focus on the case that the parameter space is one dimensional, i.e. $\alpha \in \mathbb{R}$.
- Consider a system

$$
\alpha \in \mathbb{R}
$$

$$
\begin{equation*}
\dot{x}=f(x, \alpha), \tag{5.38}
\end{equation*}
$$

where $x \in \mathbb{R}^{n}$ and $\alpha \in \mathbb{R}$. We say a bifurcation occurs at $\alpha=\alpha_{c}$ if the dynamics of the system changes suddenly at $\alpha=\alpha_{c}$.

- The parameter value α_{c} is called the bifurcation value.
- Recall from the first lecture that a mathematical model for understanding synchronization in networks is given by
where $x_{i} \in \mathbb{R}^{n}(n \geq 1), A=\left(A_{i j}\right)$ is the adjacency matrix of the network, and $f_{i}, H_{i} \in \mathcal{C}^{2}\left(\mathbb{R}^{n}\right)$. As it was mentioned in the first lecture, there exists a parameter value α_{c} (and we also discussed for the linear case in Section 4.6), called critical coupling strength, such that for $\alpha<\alpha_{c}$, system (5.39) is not in synchrony but it gets into synchrony for $\alpha \geq \alpha_{c}$.

$$
\alpha<\alpha_{c}
$$

Example 5.37. Consider the system

$$
\begin{equation*}
\dot{x}=x^{2}-\alpha, \quad x, \alpha \in \mathbb{R} \tag{5.40}
\end{equation*}
$$

$$
\dot{x}=x^{2}
$$

- For $\alpha<0$, system (5.40) has no equilibria. The phase portrait of this system is shown in Figure 36.

Figure 36: Case $\alpha<0$.

- For $\alpha=0$, system (5.40) has a nonhyperbolic equilibrium at $x=0$. The phase portrait of this system is shown in Figure 37.

Figure 37: Case $\alpha=0$.

- For $\alpha>0$, system (5.40) has two hyperbolic equilibria at $x=-\sqrt{\alpha}$ (sink) and $x=\sqrt{\alpha}$ (source). The phase portrait of this system is shown in Figure 38.

Figure 38: Case $\alpha>0$.

- A bifurcation occurs in this system at $\alpha=0$.

$$
x^{2}-\alpha=0
$$

Figure 39: Bifurcation diagram for the system $\dot{x}=x^{2}-\alpha$, where $x, \alpha \in \mathbb{R}$.

$$
\alpha_{c}=0
$$

Hope bifurcation

- Consider the nonlinear planar system

$$
\begin{aligned}
& \dot{x}=-y+x\left(\mu-x^{2}-y^{2}\right) \\
& \dot{y}=x+y\left(\mu-x^{2}-y^{2}\right)
\end{aligned}
$$

$$
x=-y+\mu x
$$

$$
\begin{equation*}
y=x+\mu y \tag{5.41}
\end{equation*}
$$

where $\mu \in \mathbb{R}$.

- The origin is an equilibrium. The linearization at the origin is $\left.\begin{array}{cc}\mu & -1 \\ 1 & \mu\end{array}\right)$. The corresponding eigenvalues are $\mu \pm i$.
- We can write system (5.41) in polar coordinates. Define

$$
\begin{equation*}
r:=\sqrt{x^{2}+y^{2}}, \quad \text { and } \quad \theta:=\arctan \frac{y}{x}, \quad \text { where }(x \neq 0) \tag{5.42}
\end{equation*}
$$

Equivalently, we have $x=r \cos \theta$ and $y=r \sin \theta$.

$$
r=\left(x^{2}+y^{2}\right)^{\frac{1}{2}}
$$

Figure 40: Polar coordinates.

- Writing system (5.41) in (r, θ)-coordinates, we have

$$
\left\{\begin{array}{l}
\dot{r}=r\left(\mu-r^{2}\right) \\
\dot{\theta}=1
\end{array}\right.
$$

- $\dot{r}=0$ means that $r(t)$ is constant.
- Corresponding to the non-zero roots of \dot{r}, we have a periodic orbit for system (5.41), in. if \dot{r} vanishes at $r=r_{0}$ and $r_{0} \neq 0$, then $(x(t), y(t))$, such that $[x(t)]^{2}+[y(t)]^{2}=r_{0}^{2}$, is a periodic orbit of system (5.41).
- Analyzing system (5.43), we can draw the phase portrait of system (5.41); see Figure 42.

Figure 41: For $\mu \leq 0$, system (5.41) has an asymptotically stable equilibrium at the origin. Once μ becomes positive, the origin loses its stability and an asymptotically stable cycle gets born.

Figure 42: The periodic orbit associated with μ is shown by Γ_{μ}. This periodic orbit appears only when $\mu>0$.

References

[Arn92] V. Arnold. Ordinary Differential Equations. Springer Verlag Textbook, third edition, 1992.
[ELP17] D. Eroglu, J. S. W. Lamb, and T. Pereira. Synchronisation of chaos and its applications. Contemporary Physics, 58(3):207-243, 2017.
[HSD12] M. W. Hirsch, S. Smale, and R. L. Devaney. Differential equations, dynamical systems, and an introduction to chaos. Academic press, 2012.
[Mey00] C. D. Meyer. Matrix analysis and applied linear algebra, volume 71. SIAM, 2000.
[Per01] L. Perko. Differential equations and dynamical systems. Springer-Verlag, third edition, 2001.
[Rob98] C. Robinson. Dynamical systems: stability, symbolic dynamics, and chaos. CRC press, second edition, 1998.
[VS18] S. Van Strien. Lecture notes on ODEs. available at https://www.ma.imperial.ac.uk/ svanstri/Files/de-4th.pdf, Spring 2018.
[Wig03] S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos, volume 2. Springer, second edition, 2003.

