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5.4. Periodic orbits: stability, limit cycles and Poincaré maps

Definition 5.31. Consider a system ẋ = f (x), where f : Rn ! Rn is smooth. Let x 2 Rn and assume it is not an
equilibrium point. Then, � = {� (t, x) , t 2 R} is said to be a periodic orbit or a cycle if there exists T > 0, such that
� (T, x) = x.

• Geometrically, a periodic orbit is a closed curve.

• Assume � is a periodic orbit and consider r > 0. Let Ur (�) be the set of all points x 2 Rn whose distance from �
is less than r.
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Analogous to equilibria, we can define the concept of stability for periodic orbits too. For arbitrary x0 2 Rn, let
�t (x0) = � (t, x0) be the solution of the system with the initial condition � (0, x0) = x0.

Definition 5.32. The cycle � is called stable if for every ✏ > 0, there exists � > 0 such that for all x0 2 U� (�) and
for all t � 0, we have �t (x0) 2 U✏ (�).

Definition 5.33. The cycle � is called unstable if it is not stable.

Definition 5.34. The cycle � is called asymptotically stable if it is stable, and there exists a � > 0 such that for all
x0 2 U� (�), we have limt!1 �t (x0) = �.
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• A standard approach to investigate the dynamics near a periodic orbit is to study an associated Poincaré map.

Figure 34: Here, � is a periodic orbit in the plane. The Poincaré map P maps x 2 ⌃ to P (x) 2 ⌃.
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Figure 35: Here, � is a periodic orbit in the 3-dimensional space. The cross-section ⌃ is 2-dimensional. The Poincaré
map P maps x 2 ⌃ to P (x) 2 ⌃.
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5.5. Bifurcations

Consider a system
ẋ = f (x,↵) , (5.32)

where x 2 Rn and ↵ = (↵1, . . . ,↵k) 2 Rk. The variable x is the phase variable.

• We can think of system (5.32) as a model for a physical problem for which, ↵ is a controlling parameter, such as
temperature, pressure, etc.

• We can also think of system (5.32) as a family of systems. For each fixed ↵, we have a system of ODEs.

Example 5.35. Consider the system
ẋ = x3 � ↵x, (5.33)

where x 2 R, and ↵ 2 R. For each fixed ↵, we have a system of ODEs. For instance,

(i) When ↵ = 4, we consider the system ẋ = x3 � 4x.

(ii) When ↵ = 0, we consider the system ẋ = x3.

(iii) When ↵ = �10, we consider the system ẋ = x3 + 10x.
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Example 5.36. Consider the system
ẋ1 = x1 � ↵1x

3
2 + ↵2x1x2,

ẋ2 = 4x2 + ↵3x1x
3
2 � ↵2x

4
1,

(5.34)

where x = (x1, x2) 2 R2, and ↵ = (↵1,↵2,↵3) 2 R3. For each fixed ↵, we have a system of ODEs. For instance,

(i) When ↵ = (0, 0, 0), we consider the system
ẋ1 = x1
ẋ2 = 4x2.

(5.35)

(ii) When ↵ = (1, 2, 0), we consider the system

ẋ1 = x1 � x32 + 2x1x2,

ẋ2 = 4x2 � 2x41,
(5.36)

(iii) When ↵ = (�1, 8,�2), we consider the system

ẋ1 = x1 + x32 + 8x1x2,

ẋ2 = 4x2 � 2x1x
3
2 � 8x41,

(5.37)
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• In this course, we focus on the case that the parameter space is one dimensional, i.e. ↵ 2 R.

• Consider a system
ẋ = f (x,↵) , (5.38)

where x 2 Rn and ↵ 2 R. We say a bifurcation occurs at ↵ = ↵c if the dynamics of the system changes suddenly
at ↵ = ↵c.

• The parameter value ↵c is called the bifurcation value.

• Recall from the first lecture that a mathematical model for understanding synchronization in networks is given by

ẋi = fi (xi) + ↵
NX

j=1

AijHi (xj � xi) , 8i 2 {1, . . . , N}, (5.39)

where xi 2 Rn (n � 1), A = (Aij) is the adjacency matrix of the network, and fi, Hi 2 C2 (Rn). As it was mentioned
in the first lecture, there exists a parameter value ↵c (and we also discussed for the linear case in Section 4.6), called
critical coupling strength, such that for ↵ < ↵c, system (5.39) is not in synchrony but it gets into synchrony for
↵ � ↵c.
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Example 5.37. Consider the system
ẋ = x2 � ↵, x,↵ 2 R. (5.40)

• For ↵ < 0, system (5.40) has no equilibria. The phase portrait of this system is shown in Figure 36.

Figure 36: Case ↵ < 0.

• For ↵ = 0, system (5.40) has a nonhyperbolic equilibrium at x = 0. The phase portrait of this system is shown in
Figure 37.

Figure 37: Case ↵ = 0.

• For ↵ > 0, system (5.40) has two hyperbolic equilibria at x = �
p
↵ (sink) and x =

p
↵ (source). The phase portrait

of this system is shown in Figure 38.

Figure 38: Case ↵ > 0.

• A bifurcation occurs in this system at ↵ = 0.
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Figure 39: Bifurcation diagram for the system ẋ = x2 � ↵, where x,↵ 2 R.
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Hopf bifurcation

• Consider the nonlinear planar system
ẋ = �y + x

�
µ� x2 � y2

�
,

ẏ = x+ y
�
µ� x2 � y2

�
,

(5.41)

where µ 2 R.

• The origin is an equilibrium. The linearization at the origin is
� µ �1
1 µ

�
. The corresponding eigenvalues are µ± i.

• We can write system (5.41) in polar coordinates. Define

r :=
p

x2 + y2, and ✓ := arctan
y

x
, where (x 6= 0). (5.42)

Equivalently, we have x = r cos ✓ and y = r sin ✓.

Figure 40: Polar coordinates.
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• Writing system (5.41) in (r, ✓)-coordinates, we have

ṙ = r
�
µ� r2

�
,

✓̇ = 1.
(5.43)

• ṙ = 0 means that r (t) is constant.

• Corresponding to the non-zero roots of ṙ, we have a periodic orbit for system (5.41), i.e. if ṙ vanishes at r = r0 and
r0 6= 0, then (x (t) , y (t)), such that [x (t)]2 + [y (t)]2 = r20, is a periodic orbit of system (5.41).

• Analyzing system (5.43), we can draw the phase portrait of system (5.41); see Figure 42.

Figure 41: For µ  0, system (5.41) has an asymptotically stable equilibrium at the origin. Once µ becomes positive,
the origin loses its stability and an asymptotically stable cycle gets born.
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Figure 42: The periodic orbit associated with µ is shown by �µ. This periodic orbit appears only when µ > 0.
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