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Synchronization From A Mathematical Point Of View 78

Theorem 4.49. Consider a system
ẋ = Ax, (4.74)

where A is a real n ⇥ n matrix. Let Es, Eu and Ec be the stable, unstable and center subspaces of the system. Then
each of these three spaces are invariant with respect to the flow of system (4.74). Moreover, we have

Rn = Es � Eu � Ec. (4.75)

Proof. See [Per01].

Proposition 4.50. 11 Let O be the origin of Rn. Consider a point x0 2 Rn, and let Es, Eu and Ec be the stable,
unstable and center subspaces of system (4.74), respectively. Then, the following hold.

(i) If x0 2 Es, then etAx0 ! O as t ! 1.

(i) If x0 2 Eu, then etAx0 ! O as t ! �1.

(i) If etAx0 ! O as t ! 1, then x0 2 Es � Ec.

(i) If etAx0 ! O as t ! �1, then x0 2 Eu � Ec.

Proof. See [Per01].

11A more comprehensive version of this result is valid: Es (resp. Eu) is indeed the set of all points x0 in Rn that converge to O exponentially fast as t ! 1 (resp.
t ! �1), i.e. 9 a > 0, M > 0 such that ketAx0k  Me�a|t| for t � 0 (resp. t  0). On the other hand, Ec is the set of the points x0 2 Rn whose orbits grow at most

sub-exponentially fast as t ! ±1, i.e. 8a > 0, ketAx0k
ea|t| ! 0 as t ! ±1 (see [Rob98], Theorem 6.1).
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Synchronization From A Mathematical Point Of View 79

Definition 4.51. Let O be the origin of Rn and consider system (4.74).

(i) We say the equilibrium O is hyperbolic if A has no eigenvalue with zero real part, i.e. Ec = {O}, or equivalently
Rn = Es � Eu. Otherwise, we say O is nonhyperbolic, i.e. A has at least one eigenvalue with zero real part.

(ii) We say the equilibrium O is a sink (resp. source) if all the eigenvalues of A have negative (resp. positive) real
parts, i.e. Es = Rn (resp. Eu = Rn).

(iii) We say the equilibrium O is a saddle if it is hyperbolic, and the matrix A has at least one eigenvalue with negative
real part and at least one eigenvalue with positive real part, i.e. Rn = Es � Eu, dim (Es) � 1 and dim (Eu) � 1.
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Synchronization From A Mathematical Point Of View 80

4.6. An example of synchronization in linear systems

Recall from the first lecture that a mathematical model for understanding synchronization in networks is given by

ẋi = fi (xi) + ↵
NX

j=1

AijHi (xj � xi) , 8i 2 {1, . . . , N}, (4.76)

where xi 2 Rn (n � 1), A = (Aij) is the adjacency matrix of the network, and fi, Hi 2 C2 (Rn).
We now discuss a simple case of this model: two identical linear systems defined on R that are linearly coupled

together. First, consider two identical linear systems

ẋ1 = ax1 (4.77)

and
ẋ2 = ax2, (4.78)

where xi 2 R (i = 1, 2) and a is a non-zero real constant. The dynamics of these systems are simple: for any initial
point xi(0), we have xi (t) = eatxi(0), i = 1, 2. Thus, xi (t) ! 0 if a < 0, and |xi (t)| ! 1 if a > 0.

(a) Case a < 0. (b) Case a > 0.

Figure 27: Phase portrait of ẋi = axi, where i = 1, 2.
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Synchronization From A Mathematical Point Of View 81

We can couple these two systems as in (4.76). We have

ẋ1 = ax1 + ↵ (x2 � x1)

ẋ2 = ax2 + ↵ (x1 � x2)
(4.79)

where ↵, the coupling strength, is a real constant. In terms of the notations in (4.76), we are considering n = 1, N = 2,
f1(x) = f2(x) = ax, A = ( 0 1

1 0 ) and Hi = identity.
We say system (4.79) gets into (complete) synchrony if for any initial condition (x1 (0) , x2 (0)) 2 R2, we have

lim
t!1

|x1 (t)� x2 (t)| = 0. (4.80)

Figure 28: Two coupled systems.
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Synchronization From A Mathematical Point Of View 82

• Define z(t) := x1(t)� x2(t). To detect the synchrony in system (4.79), we need to see when z(t) ! 0 as t ! 1.

• Recall that
ẋ1 = (a� ↵) x1 + ↵x2
ẋ2 = ↵x1 + (a� ↵) x2

(4.81)

• We have
ż = ẋ1 � ẋ2 = (a� 2↵) z. (4.82)

This yields z (t) = e(a�2↵)tz (0). Thus, limt!1 z(t) = 0 for arbitrary z(0) if and only if a� 2↵ < 0.

• Define ↵c :=
a
2 . This constant is called the critical coupling value. We have that system (4.79) gets into (complete)

synchrony if and only if ↵ > ↵c.
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Synchronization From A Mathematical Point Of View 83

5. Nonlinear systems

5.1. Stability of equilibria

Consider a system
ẋ = f (x) , (5.1)

where f : Rn ! Rn is smooth. Assume that x⇤ 2 Rn is an equilibrium of this system, i.e. f(x⇤) = 0. Let r > 0. An
open ball in Rn with radius r, centered at x⇤ is defined by

Br (x
⇤) = {x 2 Rn : kx� x⇤k < r}. (5.2)
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Synchronization From A Mathematical Point Of View 84

For arbitrary x0 2 Rn, let �t (x0) = � (t, x0) be the solution of (5.1) with the initial condition � (0, x0) = x0.

Definition 5.1. The equilibrium x⇤ is called stable if for every ✏ > 0, there exists � > 0 such that for all x0 2 B� (x⇤)
and for all t � 0, we have �t (x0) 2 B✏ (x⇤).

Definition 5.2. The equilibrium x⇤ is called unstable if it is not stable.

Definition 5.3. The equilibrium x⇤ is called asymptotically stable if it is stable, and there exists a � > 0 such that for
all x0 2 B� (x⇤), we have limt!1 �t (x0) = x⇤./
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Synchronization From A Mathematical Point Of View 85

Figure 29: The origin is stable but not asymptotically stable.
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Synchronization From A Mathematical Point Of View 86

Figure 30: The origin is asymptotically stable.
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Figure 31: The origin is an unstable equilibrium.
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Synchronization From A Mathematical Point Of View 88

Consider a system
ẋ = f (x) , (5.3)

where f : Rn ! Rn is smooth. Assume that the origin of 2 Rn is an equilibrium of this system12, i.e. f(0) = 0.

• Question: what is the stability of the equilibrium point at the origin? Stable? Asymptotically stable? Or unstable?

• Answer to the question for the linear case:

Consider the case that f is linear, i.e. f (x) = Ax, for some A 2 Rn⇥n. Indeed,

ẋ = Ax. (5.4)

Proposition 5.4. Consider the decomposition Rn = Es � Eu � Ec for system (5.4). Then

(i) If the origin is stable, then Eu = {0}. In other words, if Eu 6= {0}, then the origin is unstable.

(ii) The origin is asymptotically stable if and only if Es = Rn, i.e. Eu = Ec = {0}.

Proof. See [Per01], Theorems 2 and 3 of Section 1.9 with their proofs.

Remark 5.5. In the case that Eu = {0} and Ec 6= {0}, further investigation is needed to determine the stability
of the equilibrium state at the origin (see e.g. [Per01], Problem 5 of the problem set of Section 1.9).

12We do not lose generality by assuming that the equilibrium is located at the origin (see Remark 3.18).
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Synchronization From A Mathematical Point Of View 89

5.2. Linearization

5.2.1 Preliminaries: Taylor’s Theorem

Assume f : Rn ! Rn is a C1-smooth function. We write

f

0

@
x1
...
xn

1

A =

0

@
f1 (x1, x2, . . . , xn)

...
fn (x1, x2, . . . , xn)

1

A , (5.5)

where fi : Rn ! R (i = 1, . . . , n) are C1.

Theorem 5.6. (Taylor’s Theorem) Assume f is k-times continuously di↵erentiable at the origin. Let ↵i, i = 1, . . . , n
be non-negative integers. Define |↵| = ↵1 + · · · + ↵n, ↵! = ↵1!↵2! · · ·↵n!, and x↵ = x↵1

1 · · · x↵n
n . Then, for |↵| = k and

i = 1, . . . , n, there exist functions hi,↵ (x), such that limx!0 hi,↵ (x) = 0, and

f

0

@
x1
...
xn

1

A =

0

B@

P
|↵|k

1
↵!D

↵f1 (0) x↵ +
P

|↵|=k h1,↵ (x) x↵

...P
|↵|k

1
↵!D

↵fn (0) x↵ +
P

|↵|=k hn,↵ (x) x↵

1

CA . (5.6)

Remark 5.7. Roughly speaking, Taylor’s Theorem states that, close to the origin, we can write f (x) as P (x) +0

remainder0, where P is a (non-zero) polynomial and the remainder is a function of x which often! can be neglected
since, in comparison to P (x), it is small.

4

/
S/DA&



Synchronization From A Mathematical Point Of View 90

Example 5.8. (Taylor’s Theorem for n = 1) Suppose f : R ! R is k-times continuously di↵erentiable. Then, we can
write f (x) = P (x) +R (x), for

P (x) = f (0) +
1

1!
f 0 (0) x+

1

2!
f 00 (0) x2 +

1

3!
f 000 (0) x3 + · · ·+ 1

k!
f (k) (0) xk, (5.7)

and
R (x) = h (x) xk (5.8)

where f (k) stands for the k-th derivative, and limx!0 h (x) = 0.

Example 5.9. Consider the function f (x) = sin x. This function is C1 (we can di↵erentiate it as many times as we
want). Write sin x = P (x) +R (x), where P is a polynomial of degree k, and R satisfies limx!0

R(x)
xk = 0. The following

are some examples of P and R.

(i) P (x) = x, and R (x) = h (x) x such that limx!0 h (x) = 0.

(ii) P (x) = x� x3

3! , and R (x) = h (x) x3 such that limx!0 h (x) = 0.

(iii) P (x) = x� x3

3! +
x5

5! �
x7

7! +
x9

9! �
x11

11! , and R (x) = h (x) x11 such that limx!0 h (x) = 0.

(iv) P (x) = x� x3

3! +
x5

5! �
x7

7! +
x9

9! �
x11

11! , and R (x) = h (x) x12 such that limx!0 h (x) = 0.
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Synchronization From A Mathematical Point Of View 91

Example 5.10. (Taylor’s Theorem for n = 2) Suppose f : R2 ! R2, given by x 7! (f1 (x) , f2 (x)), where x = (x1, x2),
is 3-times continuously di↵erentiable. We can write

f1 (x1, x2) = f1 (0, 0)

+
1

1!
· @f1
@x1

(0, 0) x1 +
1

1!
· @f1
@x2

(0, 0) x2

+
1

2!
· @f1
@x21

(0, 0) x21 +
1

1!1!
· @f1
@x1@x2

(0, 0) x1x2 +
1

2!
· @f1
@x22

(0, 0) x22

+
1

3!
· @f1
@x31

(0, 0) x31 +
1

2!1!
· @f1
@x21@x2

(0, 0) x21x2 +
1

1!2!
· @f1
@x1@x22

(0, 0) x1x
2
2 +

1

3!
· @f1
@x32

(0, 0) x32

+ h1,30 (x) x
3
1 + h1,21 (x) x

2
1x2 + h1,12 (x) x1x

2
2 + h1,03 (x) x

3
2

(5.9)

such that all the functions h converge to 0 as x ! 0. Regarding f2, we have

f2 (x1, x2) = f2 (0, 0)

+
1

1!
· @f2
@x1

(0, 0) x1 +
1

1!
· @f2
@x2

(0, 0) x2

+
1

2!
· @f2
@x21

(0, 0) x21 +
1

1!1!
· @f2
@x1@x2

(0, 0) x1x2 +
1

2!
· @f2
@x22

(0, 0) x22

+
1

3!
· @f2
@x31

(0, 0) x31 +
1

2!1!
· @f2
@x21@x2

(0, 0) x21x2 +
1

1!2!
· @f2
@x1@x22

(0, 0) x1x
2
2 +

1

3!
· @f2
@x32

(0, 0) x32

+ h2,30 (x) x
3
1 + h2,21 (x) x

2
1x2 + h2,12 (x) x1x

2
2 + h2,03 (x) x

3
2

(5.10)

such that all the functions h converge to 0 as x ! 0.
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Synchronization From A Mathematical Point Of View 92

5.2.2 Linearization at equilibria: stable and unstable invariant manifolds theorem

Consider a system
ẋ = f (x) , (5.11)

where f : Rn ! Rn is smooth. Think of f as f

✓ x1
...
xn

◆
=

 
f1(x1,x2,...,xn)

...
fn(x1,x2,...,xn)

!
. Assume that the origin is an equilibrium of

this system, i.e. f(0) = 0. According to Taylor’s theorem, we can write system (5.11) as

ẋ = Df (0) x+ F (x) , (5.12)

where F (x) = h (x) x, for some h satisfying limx!0 h (x) = 0, and Df(0) (called the derivative or di↵erential of f at 0)
is given by the n⇥ n matrix

Df (0) =

0

BBB@

@f1
@x1

(0) @f1
@x2

(0) · · · @f1
@xn

(0)
@f2
@x1

(0) @f2
@x2

(0) · · · @f2
@xn

(0)
...

... . . . ...
@fn
@x1

(0) @fn
@x2

(0) · · · @fn
@xn

(0)

1

CCCA
. (5.13)

Definition 5.11. Consider system (5.11). The expressions Df (0) x and F (x) are called the linear and nonlinear
parts of the system at the origin, respectively. Moreover, we call the linear system

ẋ = Df (0) x, (5.14)

the linearized system at the origin.
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Synchronization From A Mathematical Point Of View 93

Definition 5.12. Consider system (5.11) with its equilibrium state at the origin. We say that the origin is a hyperbolic
equilibrium if it is a hyperbolic equilibrium for the linearized system (see Definition 4.51), i.e. all the eigenvalues of
Df(0) have non-zero real parts. An equilibrium which is not hyperbolic is called nonhyperbolic.

Remark 5.13. We can think of the linearized system as an approximation of system (5.11) near the origin. A natural
question that arises here is that to what extent the stability of the linearized system gives information about the stability
of the original (nonlinear) system.
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Synchronization From A Mathematical Point Of View 94

Theorem 5.14 (stable and unstable invariant manifolds theorem). Consider a system ẋ = f (x), where f : Rn ! Rn

is C1-smooth. Assume that the origin O of Rn is a hyperbolic equilibrium. Let Es and Eu be the stable and unstable
subspaces of the linearized system at O, respectively, and suppose k := dim (Es). Consider an arbitrary point x0 2 Rn

and let x(t), where x(0) = x0, be its orbit. Then, there exist manifolds W s (O) and W u (O), both containing the origin,
such that

(i) x(t) ! O as t ! 1 if and only if x0 2 W s (O).

(ii) x(t) ! O as t ! �1 if and only if x0 2 W u (O).

(iii) W s (O) and W u (O) are invariant with respect to the flow of the system and they are tangent to Es and Eu at O,
respectively.

Proof. See [Per01].
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Synchronization From A Mathematical Point Of View 95

Definition 5.15. Consider a C1 system ẋ = f(x) on Rn with an equilibrium at the origin O. We say O is a sink,
source or saddle if it is a sink, source or saddle for the linearized system ẋ = Df(0)x, respectively.

• Recall that O is a sink (resp. source) of ẋ = Df(O)x if all the eigenvalues of Df(O) have negative (resp. positive)
real parts. It is a saddle if it is hyperbolic, and Df(O) has at least one eigenvalue with negative real part and at
least one eigenvalue with positive real part.

Remark 5.16. By definition, sinks, sources and saddles are hyperbolic.

Remark 5.17. It follows from the stable and unstable invariant manifolds theorem that sinks are asymptotically stable,
sources and saddles are unstable.
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Synchronization From A Mathematical Point Of View 96

Example 5.18. Consider the nonlinear system

ẋ1 = �x1 � x22,

ẋ2 = x2 + x21.
(5.15)

The origin is an equilibrium of this system. The linearized system at the origin is given by

ẋ1 = �x1,

ẋ2 = x2.
(5.16)

The corresponding stable subspace Es and unstable subspace Eu are the horizontal and vertical axes, respectively. Figure
shows the stable and unstable manifolds of the origin of system (5.15) (see [Per01], Example 2 on page 111 for further
details). The stable and unstable manifolds are one-dimensional and tangent to Es and Eu, respectively.
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