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4.5. Stability of equilibria in linear systems

4.5.1 Preliminaries from Linear Algebra

In this section, we briefly review some concepts from Linear Algebra. For a more detailed review on this topic, we
recommed [HSD12] (Sections 2.3 and 5.1).

Vector norms

Let x =

✓ x1
...
xn

◆
be a vector in Rn. In this course, we define the norm of x, denoted by kxk, by

kxk =
q
x21 + x22 + · · ·+ x2n. (4.42)

This norm is called the standard norm of the Euclidean space Rn.

Remark 4.19. Norm is a function which assigns a non-negative real number to every vector of Rn.

Example 4.20. (i) Consider v = (�3, 0, 3, 2) 2 R4. Then

kvk =
q

(�3)2 + 02 + 32 + 22 =
p
9 + 0 + 9 + 4 =

p
22. (4.43)

(ii) Let O be the origin of Rn. Then, kOk = 0.

(iii) let �1 = (�1) 2 R. Then k(�1)k = 1.

Exercise 4.21. Prove that the norm defined by (4.42) satisfies the following properties.

(i) Let O be the origin of Rn, and x 2 Rn be an arbitrary vector. Then, kxk = 0 if and only if x = O.

(ii) Let r be an arbitrary real number, and v be an arbitrary vector in Rn. Then, krvk = |r|kvk.

(iii) (Triangular inequality) Let x, y 2 Rn. Then, kx+ yk  kxk+ kyk.

$

$'

$

(.
$

0 $ $

!



Synchronization From A Mathematical Point Of View 61

Linear independence

Definition 4.22. Consider m vectors v1, v2, . . . , vm in Rn. A linear combination of these m vectors is any vector of
the form

r1v1 + r2v2 + · · ·+ rmvm, (4.44)

where ri are arbitrary real numbers.

Definition 4.23. Consider the vectors v1, v2, . . . , vm, where m � 2, in Rn. We say that these m vectors are linearly
independent if and only if none of these vectors can be written as a linear combination of the other m� 1 vectors. An
equivalent version of this definition is as follows: if r1v1+r2v2+ · · ·+rmvm = 0, for some real ri, then r1 = · · · = rm = 0.

Example 4.24. The vectors ( �1
1 ) and ( 20 ) are linearly independent. Here is why: let r1, r2 2 R. Then,

r1

✓
�1
1

◆
+ r2

✓
2
0

◆
=

✓
0
0

◆
=)

✓
2r2 � r1

r1

◆
=

✓
0
0

◆
=) r1 = 0 =) r2 = 0. (4.45)

Example 4.25. The vectors ( 3
�1 ), (

5
2 ) and

� �7
�5

�
are not linearly independent. Here is why: let r1 = �2, r2 = 4 and

r3 = 2. Then,

�2

✓
3
�1

◆
+ 4

✓
5
2

◆
+ 2

✓
�7
�5

◆
=

✓
0
0

◆
. (4.46)
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Generated vector subspaces

Suppose that a family of vectors {v↵} in Rn is given. Then, the set

V = {r1v1 + r2v2 + · · ·+ rmvm : m � 1 is an arbitrary integer, ri are arbitrary real numbers, and vi 2 {v↵}} (4.47)

is a vector subspace of Rn.

Definition 4.26. The set V is called the vector (sub)space generated by {v↵}. We denote it by h{v↵}i.
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Let V1, V2, ..., and Vk be subspaces of Rn. Assume that the intersection of any two of these subspaces is only the
origin of Rn, i.e. Vi \ Vj = {0}, for all 1  i, j  k. We write

Rn = V1 � · · ·� Vk (4.48)

if Rn can be generated by V1, V2, ..., Vk, i.e. Rn = hV1, . . . , Vki.

Remark 4.27. Assume Rn = V1 � · · · � Vk. Then, for any arbitrary v 2 Rn, there exists a unique vector vi 2 Vi,
for every i = 1, . . . , k, such that v = v1 + v2 + · · · + vk. In other words, an arbitrary vector v 2 Rn can be uniquely
decomposed to components in each of the subspaces Vi.
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Eigenvalues, eigenvectors and (generalized) eigenspaces

Definition 4.28. For a given n ⇥ n matrix A, define p(x) := det (A� xI). The expression p(x) is a polynomial of
degree n and is called the characteristic polynomial of A.

Example 4.29. Consider the matrix Q = ( �1 4
5 2 ). The characteristic polynomial of Q is

p(x) = det (Q� xI) = det

✓
�1� x 4

5 2� x

◆
= (�1� x)⇥ (2� x)� 4⇥ 5 = x2 � x� 22. (4.49)

Example 4.30. Consider the matrix Q =
�
a �b
b a

�
, where a and b are real numbers. The characteristic polynomial of

Q is

p(x) = det (Q� xI) = det

✓
a� x �b
b a� x

◆
= (a� x)2 + b2 = x2 � 2ax+ a2 + b2. (4.50)
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Definition 4.31. The roots of the characteristic polynomial of the matrix A are called the eigenvalues of A.

Remark 4.32. Considering the multiple (repeated) roots of p(A), the n⇥ n matrix A has exactly n eigenvalues. The
number of times that the eigenvalue � appears as the root of the characteristic polynomial p(x) is called the algebraic
multiplicity of �. An eigenvalue � is said to be simple if its algebraic multiplicity is 1.

Example 4.33. The matrix given in Example 4.29 has two eigenvalues given by �1,2 =
1
2

�
1±

p
89
�
.

Example 4.34. The matrix given in Example 4.30 has two eigenvalues given by �1,2 = a± bi, where i =
p
�1.

Remark 4.35. As Example 4.30 suggests, the eigenvalues of a real matrix A can be non-real too. In this case, non-real
eigenvalues appear as pairs. More precisely, if � = a + bi (i =

p
�1) is an eigenvalue of A then the complex conjugate

of �, i.e. � = a� bi, is an eigenvalue of A too.

Example 4.36. It is easily seen that the eigenvalues of diagonal matrices (or more generally, upper or lower triangular
matrices) are exactly the elements on the diagonal. For example, each of the matrices

0

BBBBBB@

�7
5 0

0
�7

0 0
�7

1

CCCCCCA
,

0

BBBBBB@

�7 �2 21 0 �1 0
0 5 4 �4 1 0
0 0 0 11

p
6 8

0 0 0 �7 2 1
0 0 0 0 0 3.23
0 0 0 0 0 �7

1

CCCCCCA
(4.51)

has six eigenvalues: eigenvalue �7 with algebraic multiplicity 3, eigenvalue 0 with algebraic multiplicity 2, and a simple
eigenvalue 5.
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Suppose that � is an eigenvalue of A. Thus, det (A� �I) = 0. Equivalently, A � �I is a singular (noninvertible)
matrix. Therefore, Null (A� �I) is non-trivial (i.e. its dimension is at least 1), where Null (A� �I) is the null space of
A��I. Assume � is real. Thus, there exists 0 6= v 2 Rn such that (A� �I) v = 0. Equivalently, Av = �v. Analogously,
for the case that � is non-real, such a vector 0 6= v 2 Cn that satisfies Av = �v can be found.

Definition 4.37. Let � be an eigenvalue of A. Any vector v 6= 0 that satisfies Av = �v is called an eigenvector of A
associated with �.

Example 4.38. Consider the matrix A = ( 2 1
1 2 ). The characteristic polynomial of A is

p (x) = det (A� xI) = det

✓
2� x 1
1 2� x

◆
= x2 � 4x+ 3. (4.52)

The eigenvalues of A are the roots of p(x) = x2 � 4x+ 3 which are � = 3 and � = 1. For � = 3, any vector of the form
v = ( rr ), where r 2 R is an eigenvector. For instance v = ( 11 ). For � = 1, any vector of the form v = ( r

�r ), where
r 2 R is an eigenvector. For instance v = ( 1

�1 ).
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Proposition 4.39. Consider a real n⇥ n matrix A and suppose that � is an eigenvalue of it with a corresponding
eigenvector v. Then, e� is an eigenvalue of eA and v is an eigenvector of eA associated with the eigenvalue e�.

Proof. Since v is an eigenvector associated to �, we have

eAv =

✓
I +

A

1!
+

A2

2!
+

A3

3!
+

A4

4!
+ · · ·

◆
v = v +

Av

1!
+

A2v

2!
+

A3v

3!
+

A4v

4!
+ · · · . (4.53)

Notice that, for a positive integer k, we have

Akv = Ak�1Av = �Ak�1v = �Ak�2Av = �2Ak�2v = · · · = �k�1Av = �kv. (4.54)

Thus, by (4.53), we have

eAv = v +
Av

1!
+

A2v

2!
+

A3v

3!
+

A4v

4!
+ · · ·

= v +
�v

1!
+

�2v

2!
+

�3v

3!
+

�4v

4!
+ · · ·

=

✓
1 +

�

1!
+

�2

2!
+

�3

3!
+

�4

4!
+ · · ·

◆
v

= e�v.

(4.55)
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Generalized eigenvectors and eigenspaces

Having Av = �v is equivalent to (A� �I) v = 0. The set of all such vectors v is called the eigenspace associated
with the eigenvalue �. We can generalize this concept as follows:

Definition 4.40. Let � be an eigenvalue of A. A vector v is said to be a generalized eigenvector if there exists an
integer k � 1 such that (A� �I)k v = 0. The set of all such vectors is a vector subspace of Rn and called the generalized
eigenspace associated with the eigenvalue �.

Example 4.41. Consider the matrix A = ( � 1
0 � ), where � 2 R. This matrix has the eigenvalue � with multiplicity 2.

To find the associated eigenvectors v = ( v1v2 ), we have

(A� �I) v = 0 =)
✓
0 1
0 0

◆✓
v1
v2

◆
=

✓
0
0

◆
=)

✓
v2
0

◆
=

✓
0
0

◆
=) v2 = 0. (4.56)

This suggests that v = ( 10 ) is an eigenvector associated with �. Moreover, we cannot find any other independent eigen-
vector for �. Let us know try to find generalized eigenvectors. To this end, we need to solve the equation (A� �I)2 v = 0
for v 2 R2. We have

A� �I =

✓
0 1
0 0

◆
=) (A� �I)2 =

✓
0 0
0 0

◆
. (4.57)

Since (A� �I)2 = 0, any arbitrary vector v satisfies (A� �I)2 v = 0. Thus, any arbitrary v 6= 0 can be considered as a
generalized eigenvector. If we look for vectors independent of from the eigenvector ( 10 ) founded earlier, we can consider,
for instance v = ( 01 ).
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4.5.2 Examples of invariant sets for linear flows

Lemma 4.42. Let A be a real n⇥ n matrix and V ✓ Rn be a subspace such that AV ✓ V . Then, eAV ✓ V .

Proof. Let x 2 V . Then

eAx = x+
Ax

1!
+

A2x

2!
+

A3x

3!
+

A4x

4!
+ · · · (4.58)

Define Mk := x + Ax
1! +

A2x
2! + · · · + Akx

k! . Thus, eAx = limk!1Mk. However, since for each positive integer j, we have
Ajx 2 V , we have Mk 2 V for all k. However, since eAx is well-defined, i.e. limk!1Mk exists, and V is closed6, we
have that eAx 2 V . Thus, eAV ✓ V .

The following proposition is an easy consequence of Lemma 4.42.

Proposition 4.43. Consider a system
ẋ = Ax, (4.59)

where A is an n ⇥ n real matrix. Let V ✓ Rn be a subspace such that AV ✓ V . If x0 be an arbitrary point in V , we
have etAx0 ✓ V for all t 2 R. In other words, V is invariant with respect to the flow of system (4.59).

Example 4.44. Consider system (4.59) and suppose � is an eigenvalue of A. Let E� be the generalized eigenspace
associated with �. It can be shown that AE� ⇢ E� (see [Per01], Section 1.9). Then, it follows from Proposition 4.43
that E� is invariant with respect to the flow of (4.59), i.e. eAtE� ✓ E� for all t 2 R.

6Here, closedness is a topological property. A set X in Rn is said to be closed in Rn, or simply closed, if for any sequence {xk} such that xk 2 X for all k, and {xk}
is convergent to some point x⇤ 2 Rn, we have x⇤ 2 X. For example, the interval (0, 1] is not closed in R because the sequence { 1

k} is in (0, 1], however, this sequence is
convergent to 0 2 R but 0 /2 (0, 1].
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4.5.3 Stable, unstable and center subspaces

Consider a system
ẋ = Ax, (4.60)

where A is an n⇥ n real matrix. The matrix A has n eigenvalues. Consider the real parts7 of these eigenvalues. Some
of these real parts are positive, some are negative and some equal to zero. Consider all the generalized eigenvectors of
these eigenvalues8.

Definition 4.45. We define

(i) Es :=
D
{v : the vector v is a generalized eigenvector of some eigenvalue �, where Re (�) < 0}

E
.

(ii) Ec :=
D
{v : the vector v is a generalized eigenvector of some eigenvalue �, where Re (�) = 0}

E
.

(iii) Eu :=
D
{v : the vector v is a generalized eigenvector of some eigenvalue �, where Re (�) > 0}

E
.

We call Es, Ec and Eu, the stable, center and unstable subspaces of system (4.60), respectively.

7Let � = a+ bi, where a, b 2 R and i =
p
�1, be a complex number. By the real part and imaginary part of �, we mean the real numbers a and b, respectively. We

write Re (�) = a and Im (�) = b. For example, Re (3� 5i) = 3, Im (3� 5i) = �5, Re (4i) = 0, Im (4i) = 4, Re (10) = 10 and Im (10) = 0
8If the eigenvalue � is non-real, its generalized eigenvector can be written as v = u+ iw, where u,w 2 Rn and i =

p
�1. In such scenario, instead of v = u+ iw 2 Cn,

we consider the vectors u and w individually, and the vector subspace spanned by these two vectors.
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Example 4.46. 9 Consider system (4.60), where A is given by

A =

0

@
�2 �1 0
1 �2 0
0 0 3

1

A . (4.61)

The matrix A has the eigenvalues �1,2 = �2± i and �3 = 3. This matrix has the eigenvectors

0

@
0
1
0

1

A± i

0

@
1
0
0

1

A (4.62)

corresponding to �1,2, and 0

@
0
0
1

1

A (4.63)

corresponding to �3. Then

Es =
D
0

@
0
1
0

1

A ,

0

@
1
0
0

1

A
E
, (4.64)

and

Eu =
D
0

@
0
0
1

1

A
E
. (4.65)

Thus, the stable subspace Es is the (x1, x2)-plane, and the unstable subspace Eu is the x3 axis (see Figure 24).

9This example together with its figure is taken from [Per01]
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Figure 24: The stable subspace Es is the (x1, x2)-plane, and the unstable subspace Eu is the x3 axis.
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Example 4.47. 10 Consider system (4.60), where A is given by

A =

0

@
0 �1 0
1 0 0
0 0 2

1

A . (4.66)

The matrix A has the pure imaginary eigenvalue �1,2 = i (with multiplicity 2) and �3 = 2. This matrix has the
eigenvectors 0

@
0
1
0

1

A± i

0

@
1
0
0

1

A (4.67)

corresponding to �1,2, and 0

@
0
0
1

1

A (4.68)

corresponding to �3. Then

Es =
D
0

@
0
1
0

1

A ,

0

@
1
0
0

1

A
E
, (4.69)

and

Eu =
D
0

@
0
0
1

1

A
E
. (4.70)

Thus, the center subspace Ec is the (x1, x2)-plane, and the unstable subspace Eu is the x3 axis (See Figure 25).

10This example together with its figure is taken from [Per01]
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Figure 25: The center subspace Ec is the (x1, x2)-plane, and the unstable subspace Eu is the x3 axis.
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Example 4.48. Consider system (4.60), where

A =

✓
� 1
0 �

◆
, (4.71)

and � 2 R. In Example 4.41, we discussed that the vectors
✓
1
0

◆
and

✓
0
1

◆
(4.72)

are the generalized eigenvectors associated with the eigenvalue �. On the other hand, we have

R2 =
D✓

1
0

◆
,

✓
0
1

◆E
. (4.73)

Therefore,

1. if � < 0, then Es = R2, Ec = {0} and Eu = {0},

2. if � = 0, then Es = {0}, Ec = R2 and Eu = {0},

3. if � > 0, then Es = {0}, Ec = {0} and Eu = R2.
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(a) Case � < 0: Es = R2, Ec = {0} and Eu = {0}. (b) Case � > 0: Es = {0}, Ec = {0} and Eu = R2.

(c) Case � = 0: Es = {0}, Ec = R2 and Eu = {0}

Figure 26: Stable, unstable and center spaces of the system ẋ = Ax, where A is given by (4.71).
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Theorem 4.49. Consider a system
ẋ = Ax, (4.74)

where A is a real n ⇥ n matrix. Let Es, Eu and Ec be the stable, unstable and center subspaces of the system. Then
each of these three spaces are invariant with respect to the flow of system (4.74). Moreover, we have

Rn = Es � Eu � Ec. (4.75)

Proof. See [Per01].

Proposition 4.50. 11 Let O be the origin of Rn. Consider a point x0 2 Rn, and let Es, Eu and Ec be the stable,
unstable and center subspaces of system (4.74), respectively. Then, the following hold.

(i) If x0 2 Es, then etAx0 ! O as t ! 1.

(i) If x0 2 Eu, then etAx0 ! O as t ! �1.

(i) If etAx0 ! O as t ! 1, then x0 2 Es � Ec.

(i) If etAx0 ! O as t ! �1, then x0 2 Eu � Ec.

Proof. See [Per01].

11A more comprehensive version of this result is valid: Es (resp. Eu) is indeed the set of all points x0 in Rn that converge to O exponentially fast as t ! 1 (resp.
t ! �1), i.e. 9 a > 0, M > 0 such that ketAx0k  Me�a|t| for t � 0 (resp. t  0). On the other hand, Ec is the set of the points x0 2 Rn whose orbits grow at most

sub-exponentially fast as t ! ±1, i.e. 8a > 0, ketAx0k
ea|t| ! 0 as t ! ±1 (see [Rob98], Theorem 6.1).
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Definition 4.51. Let O be the origin of Rn and consider system (4.74).

(i) We say the equilibrium O is hyperbolic if A has no eigenvalue with zero real part, i.e. Ec = {O}, or equivalently
Rn = Es � Eu. Otherwise, we say O is nonhyperbolic, i.e. A has at least one eigenvalue with zero real part.

(ii) We say the equilibrium O is a sink (resp. source) if all the eigenvalues of A have negative (resp. positive) real
parts, i.e. Es = Rn (resp. Eu = Rn).

(iii) We say the equilibrium O is a saddle if it is hyperbolic, and the matrix A has at least one eigenvalue with negative
real part and at least one eigenvalue with positive real part, i.e. Rn = Es � Eu, dim (Es) � 1 and dim (Eu) � 1.
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