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4.2. Matrix exponentials: properties and examples

Proposition 4.10. Let A and B be real n⇥ n matrices. Then

(i) if AB = BA, then e
A
B = Be

A.

(ii) if AB = BA, then e
A+B = e

A
e
B.

(iii)
�
e
A
��1

= e
�A.

Exercise 4.11. Prove Proposition 4.10.

Example 4.12. Consider a diagonal n⇥ n real matrix A =

 
�1

�2

...
�n

!
, where �1, . . . ,�n 2 R. Similar conclusion

as in Example 4.4 gives

e
A =

0

BB@

e
�1

e
�2

. . .
e
�n

1

CCA (4.14)

Corollary 4.13. If follows from Example 4.12 (take �1 = · · · = �n = 0) that if A is the zero matrix, then e
A = I,

where I is the identity matrix.
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Example 4.14. Let � and � be real numbers and consider

A =

✓
� �

0 �

◆
. (4.15)

In this example, we show that

e
A = e

�

✓
1 �

0 1

◆
. (4.16)

Write A = �I +M , where I is the identity matrix and M =
�
0 �

0 0

�
. The matrices M and �I commute (we say two

matrices P and Q commute if PQ = QP ). By Proposition 4.10, we have e
A = e

�I+M = e
�I
e
M .

In Example 4.4, we have shown that

e
�I =

✓
e
� 0
0 e

�

◆
. (4.17)

On the other hand, we have M
2 = 0, and therefore M

k = 0 for all integer k � 0. This yields

e
M =

1X

k=0

M
k

k!
= I +M =

✓
1 �

0 1

◆
. (4.18)

We have

e
A = e

�I
e
M =

✓
e
� 0
0 e

�

◆✓
1 �

0 1

◆
= e

�

✓
1 �

0 1

◆
. (4.19)
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Example 4.15. Let a and b be real numbers and consider

A =

✓
a �b

b a

◆
. (4.20)

We show that

e
A = e

a

✓
cos b � sin b
sin b cos b

◆
. (4.21)

Let � = a+ bi, where i =
p
�1. Thus

A =

✓
a �b

b a

◆
=

✓
Re (�) � Im (�)
Im (�) Re (�)

◆
. (4.22)

Note that, �2 = (a+ bi)2 = a
2 � b

2 + 2abi. Therefore

A
2 =

✓
a �b

b a

◆✓
a �b

b a

◆
=

✓
a
2 � b

2 �2ab
2ab a

2 � b
2

◆
=

✓
Re
�
�
2
�

� Im
�
�
2
�

Im
�
�
2
�

Re
�
�
2
�
◆
. (4.23)
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Inductively, for any integer k > 0, we can show that

A
k =

✓
a �b

b a

◆k

=

✓
Re
�
�
k
�

� Im
�
�
k
�

Im
�
�
k
�

Re
�
�
k
�
◆
. (4.24)

We have

e
A =

1X

k=0

A
k

k!
=

1X

k=0

0

@
Re
⇣
�
k

k!

⌘
� Im

⇣
�
k

k!

⌘

Im
⇣
�
k

k!

⌘
Re
⇣
�
k

k!

⌘

1

A =

0

@
P1

k=0Re
⇣
�
k

k!

⌘
�
P1

k=0 Im
⇣
�
k

k!

⌘

P1
k=0 Im

⇣
�
k

k!

⌘ P1
k=0Re

⇣
�
k

k!

⌘

1

A

=

✓
Re
�
e
�
�

� Im
�
e
�
�

Im
�
e
�
�

Re
�
e
�
�
◆

= e
a

✓
cos b � sin b
sin b cos b

◆
.

(4.25)

Note that, in the last equality, we used the Euler’s formula: for any real number x, we have e
ix = cosx+ i sin x. Thus,

for � = a+ ib, we get e� = e
a
e
ib = e

a (cos b+ i sin b).
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4.3. Matrix exponentials: the key idea of calculation

A natural question that may arise here is that how we can calculate e
A for an arbitrary matrix A. The key idea is

as follows. Let P be an invertible matrix, and consider B := P
�1
AP . Then, for any integer k > 0, we have

B
k =

�
P

�1
AP
�k

=

k timesz }| {�
P

�1
AP
�
· · ·
�
P

�1
AP
�
= P

�1
A��P���P

�1
A��P���P

�1
A��P · · ·���P

�1
AP = P

�1
A

k
P (4.26)

which implies Ak = PB
k
P

�1. Thus,

e
A =

1X

k=0

A
k

k!
=

1X

k=0

PB
k
P

�1

k!
= P

 1X

k=0

B
k

k!

!
P

�1 = Pe
B
P

�1
. (4.27)

What relation (4.27) suggests is that if, for a given A, we can find B such that B = P
�1
AP , for some invertible

matrix P , and computing e
B be easy, then we can find e

A using relation (4.27), i.e. eA = Pe
B
P

�1. For example, if A is
diagonalizable, we can choose B to be a diagonal matrix and then use Example 4.12.

Remark 4.16. Most of the matrices are diagonalizable. For non-diagonalizable matrices, the matrix B can be chosen
to be the Jordan form of A. In this course, we deal with non-diagonalizable case for 2⇥ 2 matrices and refer the reader
to [VS18] for higher dimensional case.
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4.4. Planar linear systems

In this section, we study the dynamics of
ẋ = Ax, (4.28)

where A is a 2⇥ 2 real matrix. Our approach is based on the following lemma

Lemma 4.17. For a given A 2 R2⇥2, there exists an invertible P 2 R2⇥2 such that B = P
�1
AP has one of the

following forms

B =

✓
� 0
0 µ

◆
, B =

✓
� 1
0 �

◆
or B =

✓
a �b

b a

◆
, (4.29)

where �, µ, a and b 6= 0 are real.

Proof. This lemma is the Jordan form theorem for the particular case of 2-dimensional matrices. See [Per01], Jordan
canonical form theorem (Section 1.8).

Let B and P be as in Lemma 4.17, and define the change of variables y = P
�1
x. Thus, y 2 R2 and x = Py. Then

ẏ = P
�1
ẋ = P

�1
Ax = P

�1
APy = By. (4.30)

This relation together with Lemma 4.17 suggests that by a linear change of variables, any given linear planar system
ẋ = Ax can be reduced to a system ẏ = By, where B is one of the three matrices given by Lemma 4.17.
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4.4.1 Case I: B =
�
� 0
0 µ

�

In this section, we study the system ẏ = By, where B =
�
� 0
0 µ

�
and y = (y1, y2) 2 R2. Consider an initial point

(y10, y20) 2 R2. The solution of ẏ = By passing through this initial point at t = 0 is

✓
y1 (t)
y2 (t)

◆
= e

Bt

✓
y10

y20

◆
=

✓
e
�t 0
0 e

µt

◆✓
y10

y20

◆
=

✓
e
�t
y10

e
µt
y20

◆
. (4.31)

Assume �, y10 and y20 are non-zero. Then,

y2 (t) = e
µt
y20 =

�
e
�t
�µ

�
y20 =

�
e
�t
y10

�µ
�
y
�µ

�
10 y20 = y

�µ
�

10 y20 [y1 (t)]
µ
� . (4.32)

This means that for the case that �, y10 and y20 are non-zero, the orbit of (y10, y20) lies in the set

{(y1, y2) : y2 = y
�µ

�
10 y20y

µ
�
1 }. (4.33)

When � 6= 0 but y10 = 0, it follows from (4.31) that y1(t) = 0 for all t 2 R. This implies that the orbit of (0, y20) is
the positive side of y2-axis if y20 > 0, the negative side of y2-axis if y20 < 0, and the origin if y20 = 0. Similarly, when
� 6= 0 but y20 = 0, it follows from (4.31) that y2(t) = 0 for all t 2 R. Thus, the orbit of (y10, 0) is the positive side of
y1-axis if y10 > 0, and the negative side of y1-axis if y10 < 0. This analysis also implies that the vertical and horizontal
axes are invariant with respect to the dynamics.
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In order to figure out the phase portrait of the system ẏ = By, where B =
�
� 0
0 µ

�
, we consider the following scenarios:

(i) � < 0 < µ or µ < 0 < �.

(ii) � = µ > 0 or � = µ < 0.

(iii) µ > � > 0 or µ < � < 0.

(iv) � > µ > 0 or � < µ < 0.

(v) � = 0 or µ = 0.
.
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• Scenario (i): � < 0 < µ or µ < 0 < �.

In this scenario, µ

�
< 0. Define � = µ

�
. According to (4.33), we need to plot the curves of the form y2 = constant · y�1 ,

where � < 0. Taking into account that the horizontal and vertical axes are invariant, we can plot the phase portrait of
the system for this scenario (see Figure 12).

• In this scenario, two orbits approach the origin as t ! 1 and two other orbits approach the origin as t ! �1.

• The equilibrium point at the origin in such scenarios is called a saddle point.

(a) � < 0 < µ. (b) µ < 0 < �.

Figure 12: Phase portrait of scenario (i).
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• Scenario (ii): � = µ > 0 or � = µ < 0.

In this scenario, µ

�
= 1. According to (4.33), we need to plot the straight lines y2 = constant ·y1. Taking into account

that the horizontal and vertical axes are invariant, we can plot the phase portrait of the system for this scenario (see
Figure 13).

(a) � = µ < 0. (b) � = µ > 0.

Figure 13: Phase portrait of scenario (ii).
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• Scenario (iii): µ > � > 0 or µ < � < 0.

In this scenario, µ

�
> 1. Define � = µ

�
. According to (4.33), we need to plot the curves of the form y2 = constant · y�1 ,

where � > 1. Taking into account that the horizontal and vertical axes are invariant, we can plot the phase portrait of
the system for this scenario (see Figure 14).

(a) Case µ < � < 0. (b) Case µ > � > 0.

Figure 14: Phase portrait of scenario (iii).
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• Scenario (iv): � > µ > 0 or � < µ < 0.

In this scenario, 0 <
µ

�
< 1. Define � = µ

�
. According to (4.33), we need to plot the curves of the form y2 =

constant · y�1 , where 0 < � < 1. Taking into account that the horizontal and vertical axes are invariant, we can plot the
phase portrait of the system for this scenario (see Figure 15).

(a) Case � < µ < 0. (b) Case � > µ > 0.

Figure 15: Phase portrait of scenario (iv).
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• Scenario (v): � = 0 or µ = 0.

Assume � = 0 and µ 6= 0. Recall from (4.31) that

✓
y1 (t)
y2 (t)

◆
=

✓
e
�t
y10

e
µt
y20

◆
. (4.34)

Suppose � = 0 and observe that any point on the y1-axis is an equilibrium. Moreover, by (4.34), we have (y1 (t) , y2 (t)) =
(y10, eµty20). This suggests that when � = 0, the orbit of (y10, y20) is the positive side of the vertical line y1 = y10 if
y20 > 0, the negative side of the vertical line y1 = y10 if y20 < 0, and the point (y10, 0) if y20 = 0. By this analysis, we
have the phase portrait for the case � = 0 and µ 6= 0 as in Figure 16. By an analogous analysis, we obtain the phase
portrait of the case � 6= 0 and µ = 0 as in Figure 17.
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(a) Case � = 0 and µ < 0. (b) Case � = 0 and µ > 0.

Figure 16: Phase portrait of scenario (v).

(a) Case µ = 0 and � < 0. (b) Case µ = 0 and � > 0.

Figure 17: Phase portrait of scenario (v).
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4.4.2 Case II: B = ( � 1
0 �

)

In this section, we study the system ẏ = By, where B = ( � 1
0 �

) and y = (y1, y2) 2 R2. Consider an initial point
(y10, y20) 2 R2. The solution of ẏ = By passing through this initial point at t = 0 is

✓
y1 (t)
y2 (t)

◆
= e

Bt

✓
y10

y20

◆
=

✓
e
�t

te
�t

0 e
�t

◆✓
y10

y20

◆
=

✓
e
�t
y10 + e

�t
ty20

e
�t
y20

◆
. (4.35)

In order to figure out the phase portrait of the system ẏ = By, where B =
�
� 1
0 µ

�
, we consider the following scenarios:

(i) � 6= 0.

(ii) � = 0.

• Scenario (i): � 6= 0.

Assume � and y20 are non-zero. From the equation y2(t) = e
�t
y20, we obtain

t =
1

�
ln

y2(t)

y20
. (4.36)

On the other hand, y1(t)
y2(t)

= y10

y20
+ t. Thus, by (4.36), we have

y1(t)

y2(t)
=

y10

y20
+

1

�
ln

y2(t)

y20
=


y10

y20
� 1

�
ln y20

�
+

1

�
ln y2 (t) , (4.37)

which gives

y1 (t) =
y10

y20
+

1

�
ln

y2(t)

y20
=


y10

y20
� 1

�
ln y20

�
y2 (t) +

1

�
y2 (t) ln y2 (t) . (4.38)

Thus, to plot the phase portrait of this scenario, we need to consider the curves of the form y1 = ↵y2 +
1
�
y2 ln y2, where

↵ is some constant. This is also easily seen that the horizontal axis y2 = 0 is invariant, and these curves are tangent to
the horizontal axis at the origin. This analysis gives Figure 18.
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Remark 4.18. Note that the y1-axis is invariant while the y2-axis is not.

(a) Case � < 0. (b) Case � > 0.

Figure 18: Scenario (i): � 6= 0
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• Scenario (ii): � = 0.

By (4.35), when � = 0, we have ✓
y1 (t)
y2 (t)

◆
=

✓
y10 + ty20

y20

◆
. (4.39)

This implies that the horizontal lines y2 = constant are invariant. the phase portrait for this scenario is given in Figure
19.

Figure 19: Phase portrait of scenario (ii): � = 0.
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4.4.3 Case III: B =
�
a �b

b a

�

In this section, we study the system ẏ = By, where B =
�
a �b

b a

�
and y = (y1, y2) 2 R2. Consider an initial point

(y10, y20) 2 R2. The solution of ẏ = By passing through this initial point at t = 0 is

✓
y1 (t)
y2 (t)

◆
= e

at

✓
cos bt � sin bt
sin bt cos bt

◆✓
y10

y20

◆
. (4.40)

In order to figure out the phase portrait of the system B =
�
a �b

b a

�
, we consider the following scenarios:

(i) a = 0.

(ii) a 6= 0.

Note that when b = 0, we have B = ( a 0
0 a

) which is the case that was studied earlier (see Figure 13).
Before we proceed to study the above scenarios, let us first see what the geometrical meaning of relation (4.40) is.

Let ✓ 2 R, and consider the matrix

R✓ =

✓
cos ✓ � sin ✓
sin ✓ cos ✓

◆
. (4.41)

• The matrix R✓ is called a rotation matrix. This matrix rotates the points in the plane about the origin by the angle
✓ (see e.g. [Mey00]). The rotation is counter-clockwise when ✓ > 0, and clockwise when ✓ < 0.

• In (4.40), the matrix
�
cos bt � sin bt
sin bt cos bt

�
rotates ( y10y20 ) by the angle bt. Thus, as t increases, this rotation is counter-

clockwise if b > 0, and clockwise if b < 0. Then, after this rotation, the coe�cient eat in (4.40) controls the size of⇣
y1(t)
y2(t)

⌘
. In other words, b controls the angle (rotation) and a controls the size of

⇣
y1(t)
y2(t)

⌘
.
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Figure 20: R✓ rotates the points in the plane by the angle ✓ about the origin.

(a) b < 0. (b) b > 0.

Figure 21: Scenario (i): a = 0.O
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(a) b < 0. (b) b > 0.

Figure 22: Scenario (ii): a > 0

(a) b < 0. (b) b > 0.

Figure 23: Scenario (ii): a < 0

1
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