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4.2. Matrix exponentials: properties and examples

PROPOSITION 4.10. Let A and B be real n X n matrices. Then

(i) if AB = BA, then ¢"B = Be. e'\k—\—‘i\ WY
(i) if AB = BA, then e+ — AP, =C e Wy /R

(iii) (e4) ™" = e 4.

Ezercise 4.11. Prove Proposition 4.10.

A1
A
Example 4.12. Consider a diagonal n X n real matriz A = ( ’ y ), where A\, ..., A\, € R. Similar conclusion
N

as in Fxample 4.4 gives

oA € _ (4.14)

COROLLARY 4.13. If follows from Ezample 4.12 (take \y = --- = X\, = 0) that if A is the zero matriz, then et =1,
where I is the identity matrix.
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Example 4.14. Let A and ~y be real numbers and consider /l' >‘1 /\/\

MM TEn . Gl N

Write A = X + M, where I is the identity matriz and M = ( 0). The matrices M and A\ commute (we say two
matrices P and QQ commute if PQ = QP). By Proposition 4.10, we have e = eM+M = MM,
In Example 4.4, we have shown that
et 0
M = (0 BYE (4.17)

On the other hand, we have M? = 0, and therefore M* =0 for all integer k > 0. This yields

In this example, we show that

(4.16)

Mk
M = —I+M= ((1) Y) . (4.18)

We have

- =2 = 'L\_

N -
(8 u)-e NI
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Example 4.15. Let a and b be real numbers and consider o, lD c ”2
a —b
A= (b . ) : In £ 0 (4.20)

oA Q
A o [cosb —sinb )
et =e ) )
sinb cosb

We show that
o o (4.21)

(4.22)

Note that, A2 = (a + bi)* = a® — b> + 2abi. Therefore
~———

=5 G = (T o) = () ey 129
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Inductively, for any integer k > 0, we can show that
k
r_ (a =b\ _ (Re(M) —Im (\")
A= (b 0 ) = (Im (W) Re (M) ) (4.24)

SiZoRe (47) —ilyIm (2_?)
00 k 00 k
Zkzo Im % Zk:O Re (%) (4.25)

We have

o [cosb —sinb
e )
sinb cosb
Note that, in the last equality, we used the
for X = a + ib, we get e* = e%’ = ¢ (cosb + isinb).

\/\/’\/\/\/

A
e — (-\—A—QXZ \%X
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4.3. Matrix exponentials: the key idea of calculation

A natural question that may arise here is that how we can calculate e? for an arbitrary matrix A. The key idea is
as follows. Let P be an invertible matrix, and consider B := P~'AP. Then, for any integer k¥ > 0, we have

k times
B* = (P'AP)" = (P7'AP) ... (P"'AP) = P'APP AP P TAP ... P"TAP = Pl AFP (4.26)
5

which implies A¥ = PB*P~!. Thus, o

-~ N

= AP &K PBFPY =, B*

A _ _ 1 _ [Blhb—1
e ZHZT.]j(Zkv)P 70 (4.27)
k=0 £:O = k

What relation (4.27) suggests is that if, for a given A, we can find B such that B = P7'AP, for some invertible
matrix P, and computing e? be easy, then we can find e using relation (4.27), i.e. e = PePP~!. For example, if A is
diagonalizable, we can choose B to be a diagonal matrix and then use Example 4.12.

Remark 4.16. Most of the matrices are diagonalizable. For non-diagonalizable matrices, the matrix B can be chosen
to be the Jordan form of A. In this course, we deal with non-diagonalizable case for 2 x 2 matrices and refer the reader
to [VS18] for higher dimensional case.

_ Bj: P Al ap = P AT
" F%’“‘z//?/%f/” FA
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4.4. Planar linear systems

o N2
In this section, we study the dynamics of /A —
where A is a 2 X 2 real matrix. Our approach is based on the following lemma

LEMMA 4.17. For a given A € R?*2, there exists an invertible P € R**? such that B = P 'AP has one of the
following forms —

B= (3 2) B= (3 i) or B= (Z _ab) (4.29)

where \, i, a and b # 0 are real.

Proof. This lemma is the Jordan form theorem for the particular case of 2-dimensional matrices. See [Per(1], Jordan
canonical form theorem (Section 1.8). O

Let B and P be as in Lemma 4.17, and define the change of variables y = P~'z. Thus, y € R? and = Py. Then
y=P i =P 1Az = P 'APy = By. (4.30)

This relation together with Lemma 4.17 suggests that by a linear change of variables, any given linear planar system
© = Ax can be reduced to a system y = By, where B is one of the three matrices given by Lemma 4.17.

3 =089 > =
N elRE J= P = = F = AN :ffi\‘jé

o n =Py (% =Ry
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4.4.1 CaseI:lB:(SO)/ ) 25‘—“3\(,) QY‘“ ‘SL“W k\B\U\BU

In this section, we study the system y = By, where B = and y = (y1,2) € R% Cqnsider an initial point
(Y10, y20) € R2. The solution of §y = By passing through this 1n1tlal pomt at t =0 is p) \L’U

e y10 _ 6 ylo
y20 y2o
Assume A\, y19 and yo9 are non-zero. Then,
yo (t) = e"ypg = (V)

Ne——- A~
This means that for the case that A, 19 and y9p are non-zero, the orbit of (y19, y20) lies in the set

>=

14

yo = (e ym) ym Y20 —ng_yzo ly1 ()] (4.32)
—— W

{1, 92) © v2 = v10"y20ur }- (4.33)

When A # 0 but yip = 0, it follows from (4.31) that y;(¢) = 0 for all ¢ € R. This implies that the orbit of (0, ys) is
the positive side of ys-axis if yo9 > 0, the negative side of yy-axis if y99 < 0, and the origin if yo9 = 0. Similarly, when
A # 0 but yo0 = 0, it follows from (4.31) that yo(t) = 0 for all £ € R. Thus, the orbit of (y19,0) is the positive side of
yr-axis if y;9 > 0, and the negative side of y;-axis if ;9 < 0. This analysis also implies that the vertical and horizontal

axes are invariant with respect to the dynamics. }\ Y
A
. A
Y, = conshomh . )

0
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In order to figure out the phase portrait of the system y = By, where B = (é 2), we consider the following scenarios:
) A<O0O<porpu<0<A

(i) A=pu>00r A=p<0.

)
)
(iii)) u>A>00r p<A<O.
(iv) A>pu>00r A< pu<0.
)

(v) A=0or u=0.
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e Scenario (i): A<O0<por u<0<A

In this scenario, £ < 0. Define 8 = §. According to (4.33), we need to plot the curves of the form y, = constant - ylﬁ :

where 8 < 0. Taking into account that the horizontal and vertical axes are invariant, we can plot the phase portrait of
the system for this scenario (see Figure 12).

e In this scenario, two orbits approach the origin as ¢ — oo and two other orbits approach the origin as ¢ — —oo. M
D2z Crn Y,

N N
I

a) A <0< p. b) <0< A

e The equilibrium point at the origin in such scenarios is called a wmn‘c.

Figure 12: Phase portrait of scenario (i).
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e Scenario (ii): A=pu>0o0r A=p <0.

In this scenario, § = 1. According to (4.33), we need to plot the straight lines y» = constant-y;. Taking into account
that the horizontal and vertical axes are invariant, we can plot the phase portrait of the system for this scenario (see
Figure 13). M

Y s oryy T =6 0N

Y2 Yo
W
Lf/ %\_oR——b? \
ch
y1 (€ ‘5'Z_,QL "‘V Y1
—L\") b I
(a) A\=pu<0. (b) A=pu>0.

Figure 13: Phase portrait of scenario (ii).

jc\}"Ob
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e Scenario (iii): u>A>0o0or p< A <0.

In this scenario, £ > 1. Define 8 = §. According to (4.33), we need to plot the curves of the form y, = constant - ylﬁ :

where 8 > 1. Taking into account that the horizontal and vertical axes are invariant, we can plot the phase portrait of
the system for this scenario (see Figure 14).

Y2 D?K Y2

(a) Case u < A < 0. (b) Case > A > 0.
——

‘L_j.-zdo

Figure 14: Phase portrait of scenario (iii).
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e Scenario (iv): A\>pu>0o0r A< pu<0.

In this scenario, 0 < £ < 1. Define 3 = £. According to (4.33), we need to plot the curves of the form y, =

constant - ylﬁ , where 0 < 8 < 1. Taking into account that the horizontal and vertical axes are invariant, we can plot the
phase portrait of the system for this scenario (see Figure 15).

Y2 Yo

L <
N

U1 U

()

(a) Case A < u < 0. (b) Case A > p > 0.

Figure 15: Phase portrait of scenario (iv).
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e et

e Scenario (v): A=0or u=0. c —C. - (

Assume A = 0 and p # 0. Recall from (4.31) that

0 _ (¢ (2%

P = (€0 = aad 4.34

(y2 (t)) <€”ty20> T S Joe (4:34)
Suppose A = 0 and observe that any point on the y;-axis is an equilibrium. Moreover, by (4.34), we have (y1 (t) ,y2 (t)) =
(Y10, €y20). This suggests that when A\ = 0, the orbit of (y10,y20) is the positive side of the vertical line y; = yyq if

Yoo > 0, the negative side of the vertical line y; = yyo if y20 < 0, and the point (yi9,0) if yo9 = 0. By this analysis, we
have the phase portrait for the case A = 0 and p # 0 as in Figure 16. By an analogous analysis, we obtain the phase

)N

N =0  nEQ

0\0) - ( \)\0'> ~n eanh
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(a) Case A =0 and p < 0.
S~——"

Figure 16: Phase portrait of scenario (v).
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(b) Case A =0 and p > 0.
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(a) Case p =0 and A < 0.

<

Figure 17: Phase portrait of scenario (v).

(b) Case =0 and A > 0.
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4.4.2 Case IL\B=(}})

In this section, we study the system y = By, where B = () 1) and y = (y1,y2) € R? Consider an initial point
(Y10, y20) € R?. The solution of j = By passing through this initial point at ¢ = 0 is

yi(8)) _ s (Y10 _ e teM\ (v _ (e Myio + Mty (4.35)
Y2 (1) Y20 0 M)\ Mg ' '
In order to figure out the phase portrait of the system y = By, where B = (3 ,i>7 we consider the following scenarios:
(i) A # 0.
(ii)) A = 0.

e Scenario (i): A # 0.

Assume A and y99 are non-zero. From the equation ys(t) = ey, we obtain

1 Yo (t)
t=—1In ) 4.36
A Y20 ( )

On the other hand, Z;Eg = % + t. Thus, by (4.36), we have

yi(t) w0 1. ya(t) [ylo 1 ] 1
=ty = e = s nys | + T lngs (1), 4.37
va(t) w20 A Y Yoo A Y201 T y2 (1) (4.37)
which gives
yio 1. ya(t) yio 1 1
t) = 2=+ —1 = [Z—= — —1] t — t)1 t). 4.38
1 (t) - o - [y20 Y Y20 yz()+)\y2()ny2() ( )

Thus, to plot the phase portrait of this scenario, we need to consider the curves of the form y; = ays + %yg In 5, where
« is some constant. This is also easily seen that the horizontal axis y» = 0 is invariant, and these curves are tangent to
the horizontal axis at the origin. This analysis gives Figure 18.
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Remark 4.18. Note that the yi-axis 1s invariant while the ys-axis 1s not.

\” I
— —

U1 <

\-(‘_
(a) Case A\ < 0. (b) Case A > 0.

~— Figure 18: Scenario (i): A # 0
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e Scenario (ii): A =0.

By (4.35), when A = 0, we have
Y1 (t) Y10 + ty20
— ) 4.39
(y2 (75)> < Y20 ) ( )

This implies that the horizontal lines y» = constant are invariant. the phase portrait for this scenario is given in Figure
19.

G a |
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AAAA
AAAA
AAAA
AAAA

H
H

AA
AA
AA
AA

4
l

Figure 19: Phase portrait of scenario (ii): A = 0.
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4.4.3 Case IIL: \B = (¢ 7)

In this section, we study the system y = By, where B = (¢ *) and y = (y1,32) € R%. Consider an initial point
(Y10, y20) € R2. The solution of §j = By passing through this initial point at ¢ = 0 is

s <y1 (t)) _ o ((cosbt —sin \bg) (ym)_

Yo (1) sinbt  cosbt Y20

In order to figure out the phase portrait of the system B = (ch ’ab ), we consider the following scenarios:

(i) a=0. [ Rodal| = (| el
(ii) a # 0.

Note that when b = 0, we have B = (¢ Y) which is the case that was studied earlier (see Figure 13).
Before we proceed to study the above scenarios, let us first see what the geometrical meaning of relation (4.40) is.

Let 6 € R, and consider the matrix
o [cos ¢ —sinf
= \sinf cosf /-

e The matrix Ry is called a rotation matrix. This matrix rotates the points in the plane about the origin by the angle
6 (see e.g. [Mey00]). The rotation is counter-clockwise when 6 > 0, and clockwise when 6 < 0.

—

(4.41)

e In (4.40), the matrix (5~ sintt) rotates (§19) by the angle bt. Thus, as ¢ increases, this rotation is counter-
clockwise if b > 0, and clockwise if b < 0. Then, after this rotation, the coefficient €™ in (4.40) controls the size of

(glg; ) In other words, b controls the angle (rotation) and a controls the size of (yl(t) )

—
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()
y2 Y2

Figure 20: Ry rotates the points in the plane by the angle 6 about the origin.
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(a) b <0. ’ (b) b > 0.
Figure 21: Scenario (1)

57
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Y2 Yo
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(a) b < 0. (b) b > 0. ﬁ
Figure 22: Scenario (ii):
Y2 Y2 M
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(a) b<0. (b) b > 0.

Figure 23: Scenario (ii): a < 0
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