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1. Introduction to the course

1. Practical information:

• All the lectures will be held on Tuesdays, 15-17 (GMT+3).

• All the lectures will be recorded.

• All the necessary information and updates on the course (including the lecture notes and recorded videos) will
be posted on the virtual learning system of Kadir Has university (Hub).

2. Materials for further reading:

The present lecture notes together with the recorded videos of the lectures is su�cient for this course. However, if
you are interested to study dynamical systems further and in more details, there are so many books available that
you can use. Below are what we recommend.

• If you’re not into reading a full textbook and prefer something short, we recommend

– S. Van Strien, Lecture notes on ODEs. available for free on the author’s webpage.

• If you want to read a textbook and have some background in mathematics (e.g. mathematical analysis, linear
algebra and calculus), we recommend

– L. Perko, Di↵erential equations and dynamical systems, third edition.

– M. W. Hirsch, S. Smale and R. L. Devaney, Di↵erential equations, dynamical systems and an introduction to
chaos, third edition.

• If you want to read a textbook but you don’t feel comfortable reading math literature or you prefer a textbook
with more taste of applications, we recommend

– S. Strogatz, Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering,
second edition.

!
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• In the introductory session, we saw examples of synchronization in real world phenomena.

• A mathematical model for these phenomena is given by

dxi

dt
= fi (xi) + ↵

NX

j=1

AijHi (xj � xi) , 8i 2 {1, . . . , N}, (1.1)

where xi 2 Rn (n � 1), A = (Aij) is the adjacency matrix of the network, and fi, Hi 2 C2 (Rn).

• Our main goal in this course is to develop methods that help us to understand the dynamics of this mathematical
model.

"
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2. Introduction to dynamical systems

2.1. Definition

• Dynamical systems studies the evolution of a system.

– A dynamical system is defined by a law of evolution which involves time and state (position). For a given
initial state, this evolution law describes how this state evolves as time passes.

– This rule can be deterministic or random.

– Time can vary continuously or discretely.

• In this course, we focus on deterministic1 continuous(-time) systems.

1
A system is called deterministic if the entire past and future of a state are uniquely determined by its state at the present time. [Arn92]
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• Rigorous formulation:

Definition 2.1. Consider Rn (n � 1). Let t be real and x be a point in Rn. A dynamical system is a function

� :R⇥ Rn ! Rn

(t, x) 7! �(t, x)
(2.1)

that satisfies

(i) �(0, x) = x for all x 2 Rn.

(ii) � (t2,� (t1, x)) = � (t1 + t2, x) for all x 2 Rn and for arbitrary t1, t2 2 R.

These two conditions are known as flow properties.

• The variable t is called the time variable. The variable x is called the phase or state variable. We also call Rn the
phase space.

(
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2.2. Visualization of dynamical systems

Suppose a dynamical system �(t, x) is given. A standard way to visualize this dynamical system is that for all
x 2 Rn, we draw the trajectory curve (path) that x takes as t varies. We show the direction of increasing in time by an
arrow on this curve.

Example 2.2. One can show (see Exercise 2.4) that the function � (t, x) =
�
e
�t
x1, e

2t
x2

�
, where x = (x1, x2) 2 R2 is

the phase variable, is a dynamical system. Consider an arbitrary point (c1, c2) 2 R2. Suppose (x1, x2) is a point on the
trajectory of (c1, c2). Thus, there exists t

⇤ 2 R such that

(x1, x2) =
�
e
�t

⇤
c1, e

2t
⇤
c2

�
. (2.2)
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In Example 2.2, if c1, c2 6= 0, we have x1

c1
= e

�t
⇤
and x2

c2
= e

2t
⇤
. Thus x2

c2
=
⇣

c1

x1

⌘2
. This implies that the curve paths

through (c1, c2), where c1, c2 6= 0, is given by
x
2

1
x2 = c

2

1
c2. (2.3)

Figure 1: This figure shows how points in R2 move by � (t, x) =
�
e
�t
x1, e

2t
x2

�



Synchronization From A Mathematical Point Of View 8

2.3. An example of dynamical systems

Example 2.3. Let a be a real number. Consider the function � : R⇥R ! R, defined by �(t, x) = e
at
x. We show that

� satisfies the flow properties.

(i) �(0, x) = e
a⇥0

x = x.

(ii) For arbitrary real t1 and t2, we have � (t2,� (t1, x)) = � (t2, eat1x) = e
at2 ⇥ e

at1x = e
a(t1+t2)x = � (t1 + t2, x).

(a) Case a < 0. (b) Case a > 0.

Figure 2: Visualization of the dynamical system �(t, x) = e
at
x

Exercise 2.4. Determine whether or not the following functions � satisfy the flow properties.

1. � : R⇥ R ! R, defined by �(t, x) = t+ x.

2. � : R⇥ R ! R, defined by �(t, x) = t
2 + x.

3. � : R⇥ R ! R, defined by �(t, x) = tx.

4. � : R⇥ R2 ! R, defined by
� (t, x) =

�
e
at
x1, e

bt
x2

�
, (2.4)

where a and b are real constants, and x = (x1, x2) 2 R2 is the phase variable.
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2.4. Orbits

• Fix a point x0 in the phase space Rn. The path that x0 takes as time t varies is called the orbit or trajectory of x0.
More precisely, the orbit or trajectory of x0 is the set

{� (t, x0) : t 2 R}. (2.5)

– Geometrically, an orbit is a curve in the phase space.

• The orbit of x0 is defined for both positive and negative times t. However, for a given orbit, we can also focus only
on positive or negative times:

– The forward orbit or positive semi-orbit of a point x0 2 Rn is the set

{� (t, x0) : t � 0}. (2.6)

– The backward orbit or negative semi-orbit of a point x0 2 Rn is the set

{� (t, x0) : t  0}. (2.7)

(a) The backward orbit of x0. (b) The orbit of x0. (c) The forward orbit of x0.

Example 2.5. For the dynamical system given in Example 2.3, there are three orbits: (i) {x : x > 0} (ii) {0} (iii)
{x : x < 0}.

Exercise 2.6. Consider the dynamical system given in Example 2.3 and let a = 0. How many orbits does this
dynamical system have?

J K (E @EG% :
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Remark 2.7. Orbits of a dynamical system never cross (here is why: assume the contrary. Thus, two di↵erent orbits
�1 and �2, where �1 6= �2, have a common point p. Then, �1 = {� (t, p) : t 2 R} = �2, which is a contradiction).

• Some important examples of orbits:

(i) Equilibria:

– The orbit of a point x0 is said to be constant if it contains only the point x0 itself, i.e. the entire orbit is
just the single point {x0}.

– We have �(t, x0) = x0 for all t 2 R. In other words, the point x0 is steady; it does not move!

– When the orbit of x0 is constant, we call the point x0 an equilibrium point or steady state (also called fixed
point in some literatures).

(ii) Periodic orbits

– The orbit �(t, x0) of x0 is said to be periodic if there exists T > 0 such that �(t, x0) = �(t+ T, x0).

– The point x0 comes back to itself after passing time T .

• We call the set of all the orbits of a dynamical system the phase portrait of that dynamical system. However,
loosely speaking, by phase portrait we usually mean the visualization of that phase portrait, i.e. drawing figures
like Figures 1 and 2.
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2.5. Time-t maps

• Consider again the function
� :R⇥ Rn ! Rn

,

(t, x) 7! �(t, x).
(2.8)

• We can think of two particular scenarios here:

1. We fix x and allow t to vary.

2. We fix t and allow x to vary.

• Scenario 1:

– This is the scenario that we considered before.

– Let x = x0 2 Rn. In this case,
� :R ! Rn

,

t 7! �(t, x0).
(2.9)

– The function � maps a real variable t to a point in Rn. In particular, it maps 0 to x0.

– �(t, x0), as t varies in R, describes the orbit of the point x0.

Figure 4: For a fixed x = x0, the function � maps R to Rn.

"
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• Scenario 2:

– Let t = t0 2 R. In this case,
� :Rn ! Rn

,

x 7! �(t0, x).
(2.10)

– The function � maps a point in Rn to a point in Rn. In particular, when t0 = 0, the function � maps each point
to itself, i.e. � is the identity map.

– When the time variable t is fixed, the function � is called time-t map. For example, x 7! �(1, x) is called time-1
map.

– Time-t maps become important when we want to discretize a continuous-time system.

Figure 5: For a fixed t = t0, the function � maps Rn to Rn.
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2.6. Invariance

Consider a dynamical system � : R⇥ Rn ! Rn and let A 6= ; be a subset of Rn.

• We say A is invariant with respect to � if for every point x0 in A, the entire orbit of x0 lies in A, i.e. �(t, x0) 2 A

for all t 2 R.

– The set A is invariant if and only if when we start from a point in A, moving forward and backward both, we
remain in A and never leave it.

Example 2.8. Let x0 be an arbitrary point of the phase space. The orbit of x0 is an invariant set.

E2
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• We say A is positively invariant or forward invariant with respect to � if for every point x0 in A, the forward orbit
of x0 lies entirely in A, i.e. �(t, x0) 2 A for all t � 0.

– The set A is invariant if and only if when we start from a point in A and move forward, we remain in A and
never leave it.

• We say A is negatively invariant or backward invariant with respect to � if for every point x0 in A, the backward
orbit of x0 lies entirely in A, i.e. �(t, x0) 2 A for all t  0.

– The set A is invariant if and only if when we start from a point in A and move backward, we remain in A and
never leave it.

Remark 2.9. Every invariant set is forward and backward invariant as well. However, not every forward or backward
invariant set is necessarily invariant.

Exercise 2.10. Determine whether or not the sets A1 = (�2, 1) and A2 = (2, 3) in R are (positively or negatively)
invariant with respect to the dynamical system given by Example 2.3.

,(
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3. Introduction to ODEs

3.1. Vector fields

Consider a function f : Rn ! Rn. One can think of f as

f

0

@
x1
...
xn

1

A =

0

@
f1 (x1, x2, . . . , xn)

...
fn (x1, x2, . . . , xn)

1

A , (3.1)

where fi : Rn ! R (i = 1, . . . , n).

Figure 6: The function f takes the point x 2 Rn and maps it to f(x) 2 Rn.

Example 3.1. The followings are examples of f : Rn ! Rn.

(i) f(x) = x
2 + 1. Here, f : R1 ! R1. (ii) f ( x1

x2 ) = ( x1+sinx2
x2

). Here, f : R2 ! R2.

(iii) f ( x1
x2 ) =

⇣
g(x1)+↵H(x2�x1)

g(x2)+↵H(x1�x2)

⌘
, where ↵ is a real constant, and g,H : R2 ! R. Here, f : R2 ! R2.

(iv) f

⇣
x1
x2
x3

⌘
=
⇣

1
1
1

⌘
. Here, f : R3 ! R3.

(v) f(x) = ↵g(x) + �h(x), where x 2 Rn, ↵ and � are real constants and g, h : Rn ! Rn. Here, f : Rn ! Rn.

"

"
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• In this course, we call a function f : Rn ! Rn a vector field. Here is why:

• One way to visualize a function f : Rn ! Rn is that for every point x 2 Rn, we draw the vector f(x) starting at
the point x and ending at x+ f(x) (see Figure 7).

Figure 7: For every point x 2 Rn, we draw the vector f(x) starting at the point x and ending at x+ f(x).
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Figure 8: The vector field f(x1, x2) = (x1, x2 � x1).
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Figure 9: A portion of the vector field f (x1, x2) = (sin x2, sin x1) on R2 (this figure is copied from Wikipedia).

"
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3.2. Solutions of ODEs

• Question: Suppose that f : Rn ! Rn is given. Let x0 2 Rn. Does there exist any function

x :R ! Rn

t 7! x (t) = (x1 (t) , . . . , xn (t))
(3.2)

such that dx(t)

dt
= f (x (t)) and x (0) = x0? If it exists, is it unique?

• By dx(t)

dt
= f (x (t)), we mean

dx1(t)

dt
= f1 (x1 (t) , x2 (t) , . . . , xn (t)) ,

dx2(t)

dt
= f2 (x1 (t) , x2 (t) , . . . , xn (t)) ,

...
...

...

dxn(t)

dt
= fn (x1 (t) , x2 (t) , . . . , xn (t)) ,

(3.3)

where f

✓
x1
...
xn

◆
=

 
f1(x1,x2,...,xn)

...
fn(x1,x2,...,xn)

!
.

• Some terminologies and notations:

– We call the equation dx(t)

dt
= f (x (t)), i.e. equation (3.3), a system of ordinary di↵erential equations.

– The condition x(0) = x0 is called an initial condition.

– The equation dx(t)

dt
= f (x (t)) together with the initial condition x(0) = x0 is called an initial value problem

(I.V.P).

– Such a function x(t), if it exists, is called a solution of the initial value problem dx(t)

dt
= f (x (t)) and x(0) = x0.

– In this course, for simplicity, we use dot to show derivative with respect to time. For example, ẋ := dx(t)

dt
.

EK 'G [F'< ,(E
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Example 3.2. The initial value problem

ẋ = 3x
2
3 , and x(0) = 0 (3.4)

has two di↵erent solutions x (t) = t
3 and x (t) = 0.

Example 3.3. The initial value problem

ẋ1 = �4x2,

ẋ2 = x1, and x (0) = (c1, c2) ,
(3.5)

where (c1, c2) is an arbitrary point in R2 has at least one solution (we will see later that this is the only solution) defined
for t 2 R, given by

x1 (t) = c1 cos 2t� 2c2 sin 2t,

x2 (t) =
c1

2
sin 2t+ c2 cos 2t.

(3.6)

Example 3.4. The initial value problem

ẋ = x
2
, and x(0) = 1 (3.7)

has the solutions x (t) = 1

1�t
, which is defined for t 2 (�1, 1). Notice that x (t) = 1

1�t
satisfies ẋ = x

2 for t 2 (1,1),
however the initial condition is not satisfied since 0 /2 (1,1).

Example 3.5. The initial value problem

ẋ = f(x), and x(0) = 0, (3.8)

where

f (x) =

⇢
1 when x < 0
�1 when x � 0

(3.9)

has no solutions. Can you see why? Hint: if x(t) is a solution then it needs to be di↵erentiable at every t, particularly
at t = 0.
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• Remember the question that we asked earlier: Does the I.V.P ẋ = f(x) and x(0) = x0 have solution? Uniqueness?

– Quick Answer: As the examples that we just reviewed suggest:

In general, NO! For an arbitrary vector field f and arbitrary initial point x0 2 Rn, the solutions neither need
to exist nor be unique; even if they exist, they are not necessarily defined for all t 2 R.

• Before we proceed to an elegant answer to our question, let’s see what the geometrical/physical meaning of a solution
is. Suppose that there is a unique solution x(t) for the I.V.P ẋ = f(x) and x(0) = x0.

– The solution x(t) describes how x0 moves in Rn as t varies.

– Define � := {x(t) : t 2 R}. Geometrically, � is a curve in Rn. Let t⇤ 2 R and x
⇤ := x(t⇤). The tangent vector

to the curve � is given by dx

dt
(t⇤). However, dx

dt
(t⇤) = f (x (t⇤)) = f(x⇤). This means that at every point x on

the curve �, the vector f(x) is tangent to �.

– Having in mind that x(t) describes the movement of x0, the vector f(x⇤) is the velocity vector at time t
⇤.

Figure 10: At every point x0, the solution curve of ẋ = f(x) passing through x0 is tangent to the vector f(x0).
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Theorem 3.6. Let f 2 C1(Rn)2, and x0 2 Rn. Then, there exists a open interval Ix0 = (↵ (x0) , � (x0)), where
↵ (x0) < 0 < � (x0), such that the initial value problem

ẋ = f(x)

x (0) = x0
(3.10)

has a unique solution x(t) on Ix0. Moreover, the interval Ix0 is maximal in the sense that if x⇤(t) is a solution of (3.10)
defined on an interval J , then J ⇢ Ix0 and x

⇤(t) = x(t) on J .

Proof. See [VS18], the proof of the existence-uniqueness theorem (Theorem 3.6) and the discussion on the maximal
solutions (Chapter 5).

Remark 3.7. This theorem guarantees that if the vector field is C1-smooth, then the solution of the I.V.P exists and
is defined on some maximal interval I ✓ R. However, as Example 3.4 shows, this interval is not necessarily equal to R;
although this theorem guarantees the existence and uniqueness of the solution, it does not guarantee the solution to exist
for all t 2 R. In this course, we assume3 that the solution x(t) of the I.V.P (3.10) exists for all t 2 R, i.e. Ix0 = R.

Remark 3.8. In system (3.10), the function f does not depend directly on t. Such systems are called autonomous.
Nonautonomous systems are those where t is an independent variable of the function f ; a nonautonomous system is
written as ẋ = f(t, x), where f : R⇥ Rn ! Rn. Theorem 3.6 holds for nonautonomous case too (see [VS18], Theorem
3.6). In this course, our focus is on autonomous systems.

Exercise 3.9. Can you say why Theorem 3.6 cannot guarantee the existence and uniqueness of solutions in Examples
3.2 and 3.5? What can this theorem say about Example 3.3?

2
In general, we say f : Rn ! Rm

, given by f

 
x1

.

.

.
xn

!
=

 
f1(x1,x2,...,xn)

.

.

.
fm(x1,x2,...,xn)

!
, is C1

-smooth, denoted by f 2 C1
(Rn

,Rm
), if for all 1  i  m and 1  j  n, the partial

derivative
@fi
@xj

(x1, · · · , xn) exists and is continuous. When n = m, we write f 2 C1
(Rn

). The functions f in Example 3.1 are smooth (assuming g, h and H are smooth).

3
This assumption is not that much strong. Indeed, for any arbitrary system ẋ = f(x), there exists a system of ODEs which is topologically equivalent to ẋ = f(x)

and its solutions are defined on whole R (see [Per01], Section 3.1).
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In general, finding explicit solutions of ODEs is not possible. Even when the explicit solutions are available, they
can be very di�cult to deal with. The aim of this course is not solving ODEs. In this course, we develop methods that
can be used to analyze ODEs without necessarily solving them.

3.3. Dynamical systems defined by ODEs

Theorem 3.6 states that when f 2 C1 (Rn), for any arbitrary x0 2 Rn, the I.V.P ẋ = f(x) and x(0) = x0 has a
unique solution on Ix0. Denote this solution by �t (x0).

Solving this I.V.P for every x0 2 Rn, we obtain a family of solutions �t(x0). Define

�(t, x) := �t(x). (3.11)

Then

Theorem 3.10. The function � : (t, x) 7! � (t, x) defined by (3.11) satisfies the flow properties

(i) �(0, x) = x for all x 2 Rn.

(ii) � (t2,� (t1, x)) = � (t1 + t2, x) for all x 2 Rn and for arbitrary t1, t2 2 R.

Remark 3.11. Assuming Ix0 = R for every x0 2 Rn, Theorem 3.10 implies that the function � : R⇥ Rn ! Rn given
by (3.11) is a dynamical system (see Definition 2.1).
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