Advanced Calculus Infimum and Supremum

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

Suppose S is an ordered set, and $E \subseteq S$. If there exists a $\beta \in S$ such that $x < \beta$ for every $x \in E$, we say that E is **bounded above**, and call β an **upper bound** of E. (lower bound is also defined similarly)

Consider *E* is bounded above and there exists an $\alpha \in S$ with the following properties :

() α is an upper bound of *E*.

2 If $y < \alpha$ then y is not an upper bound of E.

In this case α is called the least upper bound or **supremum** of *E*, shown by $\alpha = sup(E)$

Greatest lower bound or infimum (inf) can be defined similarly.

Example 1: For $A = \{\frac{1}{n} \mid n \in \mathbb{N}\} \subseteq \mathbb{Q}$, sup(A) = 1, inf(A) = 0. **Example 2**: For $B = \{r \in \mathbb{Q}^{\geq 0} \mid r^2 < 2\} \subseteq \mathbb{Q}$, inf(B) = 0, but the supremum does not exist in \mathbb{Q} . (why?)

Example 3: For $C = \{r \in \mathbb{Q}^{\geq 0} \mid 2 < r^2 < 4\} \subseteq \mathbb{Q}$, sup(B) = 2, but the infimum does not exist in \mathbb{Q} . (why?)

Example 1 and 2 shows us that there are 'some' gaps between rational numbers and they are not a 'continuum'.

The necessary and sufficient conditions for α to be the supremum of a nonempty set A is:

- **1** For every $x \in A$, $x \leq \alpha$.
- **②** For every number u less than α , A has an element greater than u.

The same can be formulated for the infimum.

The necessary and sufficient conditions for α to be the supremum of a nonempty set A is:

- **1** For every $x \in A$, $x \leq \alpha$.
- Por every positive number ε, A has an element x such that α − ε < x.</p>

The same can be formulated for the infimum.