Advanced Calculus Alternating k-Forms

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

Let V be a real vector space. An alternating k-form ω on V is a map

$$\omega: V^k \to \mathbb{R}$$

that is multilinear (i.e. linear in each of the k variables) and has the additional property that $\omega(v_1, v_2, \ldots, v_k) = 0$ if $v_1, v_2, \ldots, v_k \in V$ are linearly dependent.

The vector space of alternating k-forms on V is denoted by $Alt^k V$. We define $Alt^0 V = \mathbb{R}$. For multilinear maps $\omega: V^k \to W$, the following conditions are equivalent:

- ω is alternating; that is, $\omega(v_1, v_2, \dots, v_k) = 0$ if $v_1, v_2, \dots, v_k \in V$ are linearly dependent.
- ω(v₁, v₂,..., v_k) = 0 if any two of the v_i are equal, that is, if there are indices i, j with i ≠ j and v_i = v_j.

伺 ト イヨ ト イヨト

• Interchanging two of the variables switches the sign: $\omega(v_1, v_2, \dots, v_k) = -\omega(v_1, \dots, v_j, \dots, v_i, \dots, v_k) \text{ for } i < j.$ If (e_1, e_2, \ldots, e_n) is a basis of V and ω an alternating k-form on V then the numbers

$$a_{\mu_1\ldots\mu_k}=\omega(e_{\mu_1},e_{\mu_2},\ldots,e_{\mu_k})$$

for $1 \leq \mu_i \leq n$, are called the components of ω with respect to the basis.

If (e_1, e_2, \ldots, e_n) is a basis of V, then the map

$$\begin{aligned} \mathsf{Alt}^k \mathsf{V} &\to \mathbb{R}^{\binom{n}{k}} \\ & \omega \mapsto (\omega(\mathsf{e}_{\mu_1}, \mathsf{e}_{\mu_2}, \dots, \mathsf{e}_{\mu_k}))_{\mu_1 < \dots < \mu_k} \end{aligned}$$

is an isomorphism.

Let $p \in U$, where (U, h) is a chart with coordinates x^1, x^2, \ldots, x^n , i.e. $h = (x^1, x^2, \ldots, x^n)$. Then the μ th vector of the basis of T_pM given by the coordinates will be denoted by $\frac{\partial}{\partial x^{\mu}} \in T_pM$ and abbreviated $\partial_{\mu} \in T_pM$.

We denote the component functions of a k-form ω on M relative to a chart (U, h) by

$$\omega_{\mu_1\dots\mu_k} = \omega(\partial_{\mu_1},\dots,\partial_{\mu_k}): U \to \mathbb{R}$$

and call a k-form continuous, differentiable, etc. if its component functions relative to the charts of some atlas in the differentiable structure on M are continuous, differentiable, etc.