Advanced Calculus Uniform Convergence

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

Uniform Convergence

Let $E \subseteq \mathbb{R}$. We say $(f_n) \in \mathcal{F}(E, \mathbb{R})^{\mathbb{N}}$ converges uniformly on $E_0 \subseteq E$ to the function $f : E_0 \to \mathbb{R}$ if for every $\varepsilon > 0$ there is an integer N such that n > N implies

$$|f_n(x)-f(x)|<\varepsilon$$

for all $x \in E_0$.

We should note that the existence of N in pointwise convergence depends on both ε and x but in uniform convergence it does not depend on x.

We show uniform convergence by $f_n \xrightarrow{u} f$.

It can be shown that

$$f_n \xrightarrow{u} f$$
 iff $\lim_{n \to \infty} \sup \{ |f_n(x) - f(x)| : x \in E_0 \} = 0$

Let $E \subseteq \mathbb{R}$ and consider $(f_n) \in \mathcal{F}(E, \mathbb{R})^{\mathbb{N}}$. Then (f_n) converges uniformly on E to some function say f, if and only if for every $\varepsilon > 0$ there is an integer N such that n > N, m > N and $x \in E$ implies

$$|f_n(x)-f_m(x)|<\varepsilon$$

We say that the series $\sum f_n(x)$ converges uniformly on E if the sequence of partial sums defined by $s_i(x) = \sum_{i=1}^n f_i(x)$ converges uniformly on E.

Suppose (f_n) is a sequence of functions defined on E, and suppose $|f_n(x)| \le M_n$ for all $n \in \mathbb{N}$ and $x \in E$. If $\sum M_n$ converges, then $\sum_{i=1}^n f_i(x)$ converges uniformly on E.

Uniform Convergence: Examples

Example 1: Consider $f_n(x) = x^n \in \mathcal{F}([0, 1], \mathbb{R})^{\mathbb{N}}$. We know the pointwise limit and want to see if the convergence is uniform or not. The answer is negative on [0, 1] because

$$\lim_{n \to \infty} \sup \{ |x^n - f(x)| : x \in [0, 1] \} = \lim_{n \to \infty} 1 = 1 \neq 0$$

What can be said for a subset that does not include 1?

Example 2: Consider $f_n(x) = \sqrt{x^2 + \frac{1}{n}}$ for all $x \in \mathbb{R}$. Then f(x) = |x| and the convergence is in fact uniform since

$$\sup \{ |\sqrt{x^2 + \frac{1}{n}} - |x|| : x \in \mathbb{R} \} = \sup \{ \frac{\frac{1}{n}}{\sqrt{x^2 + \frac{1}{n}} + |x|} : x \in \mathbb{R} \}$$
$$= \frac{\frac{1}{n}}{\frac{1}{\sqrt{n}}} = \frac{1}{\sqrt{n}} \to 0$$

Example 3: Consider $f_n(x) = \frac{\sin(n^2x)}{n}$ for all $x \in \mathbb{R}$ with pointwise limit f(x) = 0. The convergence is also uniform on \mathbb{R} . To see this note that $|\frac{\sin(n^2x)}{n}| \le \frac{1}{n}$.

Example 4: Consider $f_n(x) = \frac{x}{1+nx^2}$ for all $x \in \mathbb{R}$. Then $f_n \xrightarrow{u} 0$. (why?)

Example 5: Consider $f_n(x) = \sqrt{n}x^n(1-x)$ for all $x \in [0,1]$. Then $f_n \xrightarrow{u} 0$. (why?)

Let $c \in \mathbb{R}$ and consider (f_n) and (g_n) are two uniformly convergent functions on E to f and g respectively. Then

- $(f_n + g_n) \xrightarrow{u} (f + g)$ on E.
- $cf_n \xrightarrow{u} cf$ on E.
- If for all n, (f_n) and (g_n) are bounded then $f_ng_n \xrightarrow{u} fg$ on E.
- If there is an m > 0 such that for all n and x, $|f_n(x)| \ge m$ (in this case we call (f_n) uniformly far from zero), then $\frac{1}{f_n} \xrightarrow{u} \frac{1}{f}$ on E.
- If for all $n, f_n : E \to [a, b]$ and if $\phi : [a, b] \to \mathbb{R}$ is uniformly continuous then $\phi(f_n) \xrightarrow{u} \phi(f)$ on E.

Let $E_0 \subseteq E \subseteq \mathbb{R}$ and $(f_n) \in \mathcal{F}(E, \mathbb{R})^{\mathbb{N}}$. If each f_n is continuous at some $x_0 \in E_0$ and $f_n \xrightarrow{u} f$ on E_0 then f is also continuous at x_0 . Thus, if each f_n is continuous on E_0 , then so is the limit function f.

Corollary: Let $E_0 \subseteq E \subseteq \mathbb{R}$ and and $(f_n) \in \mathcal{F}(E, \mathbb{R})^{\mathbb{N}}$. If each f_n is continuous at some $x_0 \in E_0$ and the series $\sum f_n$ converges uniformly on E_0 to a sum $s \in \mathcal{F}(E_0, \mathbb{R})$ then s is also continuous at x_0 . In particular, if each f_n is continuous on E_0 then so is the sum s.

Uniform Convergence and Integrability

Let (f_n) be a sequence of Riemann integrable functions on [a, b]. If $f_n \xrightarrow{u} f$ on [a, b] then f is also Riemann integrable on [a, b] and for all $x \in [a, b]$ we have

$$\int_{a}^{x} f(t)dt = \lim_{n \to \infty} \int_{a}^{x} f_{n}(t)dt$$

Corollary (Term-by-Term Integration): Let (f_n) be a sequence of Riemann integrable functions on [a, b]. If $\sum f_n$ converges uniformly to a sum s on [a, b] then s is also Riemann integrable on [a, b] and for all $x \in [a, b]$ we have

$$\int_{a}^{x} s(t) dt = \sum_{n=1}^{\infty} \int_{a}^{x} f_{n}(t) dt$$

Uniform Convergence and Differentiability

Let (f_n) be a sequence of differentiable functions on [a, b] such that $f_n(x_0)$ converges for some $x_0 \in [a, b]$. If the sequence (f'_n) of derivatives converges to a function g uniformly on [a, b] then the sequence (f_n) converges uniformly on [a, b] to a differentiable function f, and for all $x \in [a, b]$ we have

$$f'(x) = \lim_{n \to \infty} f'_n(x) = g(x)$$

Corollary (Term-by-Term Differentiation): Let (f_n) be a sequence of differentiable functions on [a, b] such that the series $\sum f_n(x_0)$ converges for some $x_0 \in [a, b]$. If the series $\sum f'_n$ of derivatives converges uniformly on [a, b] then the series $\sum f_n$ converges uniformly on [a, b] to a differentiable sum s and for all $x \in [a, b]$ we have

$$s'(x) = (\sum_{n=1}^{\infty} f_n(x))' = \sum_{n=1}^{\infty} f'_n(x)$$