Advanced Calculus Mean Value Theorems

ThinkBS: Basic Sciences in Engineering Education

Kadir Has University, Turkey

ThinkBS: Basic Sciences in Engineering Education Advanced Calculus

Before coming to Mean Value Theorems (MVT) we first need to give the following definition:

Assume $f : I \to \mathbb{R}$ and $x_0 \in I^\circ$. We say that f has a local maximum (resp., local minimum) at x_0 if there exists $\delta > 0$ such that $f(x) \leq f(x_0)$ (resp., $f(x) \geq f(x_0)$) for all $x \in (x_0 - \delta, x_0 + \delta) \cap I$.

We say that f has a local extremum at x_0 if it has a local maximum or a local minimum at x_0 .

f is said to have a global or absolute maxima/minima if the conditions specified above is true for all $x \in I$.

Let $f : I \to \mathbb{R}$ and $x_0 \in I^\circ$ be an interior point. If f has a local extremum at x_0 and is differentiable at x_0 then $f'(x_0) = 0$.

Fermat's Theorem states that the tangent line to the graph of f at the point $(x_0, f(x_0))$ is horizontal.

The converse of this theorem is not true. For instance consider $f(x) = x^3$ at point $x_0 = 0$. While f'(0) = 0 but $x_0 = 0$ is not a maximum or minimum point.

Darboux's Theorem: Let $f : I \to \mathbb{R}$ be differentiable on I° and let a < b in I° be such that $f'(a) < \eta < f'(b)$. Then there exists $\xi \in (a, b)$ such that $f'(\xi) = \eta$.

Rolle's Theorem: Let Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b], be differentiable on (a, b) and satisfy f(a) = f(b). Then there exists a point $c \in (a, b)$ such that f'(c) = 0.

Find an example which shows that c in the Rolle's theorem is not necessarily unique.

Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). Then there exists a point $c \in (a, b)$ such that

$$f'(c) = rac{f(b) - f(a)}{b - a}$$

To interpret MVT geometrically, assume that f(t) represents a car's position at time t, then f'(t) represents the instantaneous velocity at that time, and $\frac{f(b)-f(a)}{b-a}$ represents the average velocity over the time interval [a, b]. Thus the MVT implies that, at some time $c \in (a, b)$ the instantaneous velocity is in fact equal to the average (i.e., mean) velocity.

Corollary 1: Let h > 0 and suppose that $f : [x, x + h] \to \mathbb{R}$ is continuous on [x, x + h] and differentiable on (x, x + h). Then there exists a number $\theta \in (0, 1)$ such that

$$f(x+h) = f(x) + hf'(x+\theta h)$$

Corollary 2: Let $f : [a, b] \to \mathbb{R}$ be continuous on [a, b] and differentiable on (a, b). If for all $x \in (a, b)$, we have f'(x) = 0, then f is a constant function; there is a $c \in \mathbb{R}$ such that f(x) = c.

Corollary 3: Let $f : I \to \mathbb{R}$ be continuous on I and differentiable on its interior I° .

Then f is increasing (resp., strictly increasing) on I if for all $x \in I^{\circ}$, $f'(x) \ge 0$ (resp., f'(x) > 0).

Similarly, f is decreasing (resp., strictly decreasing) on I if for all $x \in I^{\circ}$, $f'(x) \le 0$ (resp., f'(x) < 0).

L'Hôpital's Rule

Let $-\infty \le a < b \le \infty$; and let $f, g : (a, b) \to \mathbb{R}$ be differentiable functions on (a, b) with $g'(x) \ne 0$ for all $x \in (a, b)$. Suppose that either

- $\lim_{x \to a} f(x) = 0 = \lim_{x \to a} g(x)$ or
- $\lim_{x\to a} g(x) = \infty$

If for some $L\in [-\infty,\infty]$ we have

• $\lim_{x \to a} \frac{f'(x)}{g'(x)} = L$

then we also have:

$$\lim_{x \to a} \frac{f(x)}{g(x)} = L$$

Use the L'Hôpital's rule to calculate $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.